A Paraconsistent Sub-Logic of Intuitionistic Propositional Logic

Sankha S. Basu

Department of Mathematics,
Indraprastha Institute of Information Technology, New Delhi, India

8th Indian Conference on Logic and its Applications (ICLA), 2019
Indian Institute of Technology Delhi, India
March 05, 2019
1 Paraconsistency

2 Paraconsistent intuitionistic logic

3 Axiomatization

4 Soundness and Completeness

5 Conclusion
1 Paraconsistency

2 Paraconsistent intuitionistic logic

3 Axiomatization

4 Soundness and Completeness

5 Conclusion
Paraconsistency

Definition

A *theory* (i.e., a set of sentences closed under some deductive relation) is said to be (negation) *consistent* if for no sentence α is both α and $\neg \alpha$ provable, else *inconsistent*. A theory is said to be *non-trivial* if not every formula is provable, else *trivial*.

Definition

A logic is said to be *paraconsistent* or *inconsistency tolerant* if it admits inconsistent but non-trivial theories.

In other words, a paraconsistent logic is a logic where it is not always possible to derive everything from a contradiction.
Paraconsistency

Classical logic, and also many non-classical logics, such as intuitionistic logic, fail in this because of the so-called principle of ‘explosion’ by which, for any sentence \(\alpha \),

\[\{\alpha, \neg \alpha\} \vdash \beta \quad \text{(ECQ : Ex contradictione quodlibet)} \]

Thus a necessary condition for a logic to be paraconsistent is that its consequence relation be not explosive, thus invalidating ECQ.
Scheme

1. Paraconsistency
2. Paraconsistent intuitionistic logic
3. Axiomatization
4. Soundness and Completeness
5. Conclusion
Stage Setting

Definition

Given a similarity type ν, the absolutely free algebra Fm of type ν over a countably infinite set X of generators is called the *formula algebra* of type ν; its underlying set will be denoted by Fm.

The elements of Fm are called *ν-terms* or *ν-formulas* and referred to by the symbols t, s, \ldots or $\alpha, \beta, \varphi, \ldots$.

Members of X are called (propositional) *variables* and denoted by the symbols x, y, \ldots or p, q, \ldots.

Definition

A *logic* of type ν is a pair $L = \langle Fm, \vdash_L \rangle$, where Fm is the formula algebra of type ν, and \vdash_L is the substitution-invariant consequence relation over Fm.
Paraconsistent Intuitionistic Logic (PIL)

Paraconsistent intuitionistic logic PIL = \langle Fm, \models \# \rangle can be semantically specified as follows.

- **Fm** is the formula algebra of type \((2, 2, 2, 1, 0, 0)\), namely, of the type containing the connectives \(\land, \lor, \rightarrow, \neg, 0, 1\).
- For any Heyting algebra \(A\), we define its extension \(A^\# = A \cup \{\omega\}\), where \(\omega \notin A\) for all Heyting algebras \(A\). Let \(S = \{A^\# | A\text{ is a Heyting algebra}\}\).
- The additional element \(\omega\) satisfies the so-called contamination principle, that is, \(\neg \omega = \omega\) and if \(A\) is any Heyting algebra, then for any \(a \in A\), \(a \circ \omega = \omega\), where \(\circ\) denotes any of the binary connectives \(\land, \lor, \rightarrow\).
- Finally, for any \(\Sigma \cup \{\alpha\} \subseteq Fm\), we define \(\Sigma \models \# \alpha \iff\) for every \(A^\# \in S\) and for every valuation \(v^\#: Fm \rightarrow A^\#\), \(v^\#[\Sigma] \subseteq \{1, \omega\}\) implies \(v^\#(\alpha) \in \{1, \omega\}\).
Relating $\models \#$ and \models_{IL}

Theorem

For all $\Sigma \cup \{\alpha\} \subseteq \text{Fm}$, we have that $\Sigma \models \# \alpha$ if and only if there is a $\Delta \subseteq \Sigma$ such that $\text{var}(\Delta) \subseteq \text{var}(\alpha)$ and $\Delta \models_{\text{IL}} \alpha$. Moreover, since IL (intuitionistic propositional logic) is finitary, we can find such a $\Delta \subseteq \Sigma$ that is finite.

Proof Outline

- Suppose $\Sigma \models \# \alpha$. Let $\Delta = \{\varphi \in \Sigma \mid \text{var}(\varphi) \subseteq \text{var}(\alpha)\}$.
- Suppose $\Delta \not\models_{\text{IL}} \alpha$. So there exists a Heyting algebra \mathbf{A} and a valuation $v : \text{Fm} \to \mathbf{A}$ such that $v[\Delta] = \{1\}$ but $v(\alpha) \neq 1$.
- We construct the valuation $v^\# : \text{Fm} \to \mathbf{A}^\#$ as follows.

 $$v^\#(p) = \begin{cases}
 v(p) & \text{if } p \in \text{var}(\alpha) \\
 \omega & \text{if } p \notin \text{var}(\alpha)
 \end{cases}$$

- For any $\varphi \in \Sigma$, either $\text{var}(\varphi) \subseteq \text{var}(\alpha)$ or $\text{var}(\varphi) \cap (\text{var}(\Sigma) \setminus \text{var}(\alpha)) \neq \emptyset$.
- In the first case, $v^\#(\varphi) = 1$, and in the second case, $v^\#(\varphi) = \omega$.
- Thus $v^\#[\Sigma] \subseteq \{1, \omega\}$. Then $v^\#(\alpha) \in \{1, \omega\}$.
- Now, $v^\#(\alpha) = v(\alpha) \in \mathbf{A}$ and $v(\alpha) \neq 1$. So $v^\#(\alpha) \notin \{1, \omega\}$. This is a contradiction, which proves that $\Delta \models_{\text{IL}} \alpha$.

Relating $\models \# \text{ and } \models_{\text{IL}}$

Proof Outline

- Conversely, suppose $\Delta \models_{\text{IL}} \alpha$ for some $\Delta \subseteq \Sigma$ with $\text{var}(\Delta) \subseteq \text{var}(\alpha)$.
- Suppose $v^\# : Fm \to A^\#$ for some $A^\# \in S$ be a valuation such that $v^\#[\Sigma] \subseteq \{1, \omega\}$.
- The possible cases are $v^\#(p) = \omega$ for some $p \in \text{var}(\alpha)$ or $v^\#(p) \neq \omega$ for all $p \in \text{var}(\alpha)$.
- In the first case, $v^\#(\alpha) = \omega$.
- In the second case, let A be the Heyting algebra corresponding to $A^\# \in S$ and $a_0 \in A$ (fixed).
 We construct a valuation $v : Fm \to A$ as follows.

\[
v(p) = \begin{cases}
 v^\#(p) & \text{if } p \in \text{var}(\alpha) \\
 a_0 & \text{otherwise}
\end{cases}
\]

- Then, since $\text{var}(\Delta) \subseteq \text{var}(\alpha)$, $v[\Delta] = v^\#[\Delta] \subseteq v^\#[\Sigma] \subseteq \{1, \omega\}$. So $v[\Delta] \subseteq \{1, \omega\} \cap A = \{1\}$. Thus $v^\#(\alpha) = v(\alpha) = 1 \in \{1, \omega\}$. This proves that $\Sigma \models \# \alpha$.
Scheme

1. Paraconsistency
2. Paraconsistent intuitionistic logic
3. Axiomatization
4. Soundness and Completeness
5. Conclusion
An axiomatization of PIL

Definition (HPIL)

HPIL is the logic $\langle \mathbf{Fm}, \vdash \# \rangle$, where $\vdash \#$ is the consequence relation of the deductive system with the following axioms and inference rule.

1. $\alpha \rightarrow (\beta \rightarrow \alpha)$;
2. $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$;
3. $\alpha \rightarrow (\beta \rightarrow \alpha \land \beta)$;
4. $\alpha \land \beta \rightarrow \alpha$;
5. $\alpha \land \beta \rightarrow \beta$;
6. $\alpha \rightarrow \alpha \lor \beta$;
7. $\beta \rightarrow \alpha \lor \beta$;
8. $(\alpha \rightarrow \gamma) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \lor \beta \rightarrow \gamma))$;
9. $(\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha)$;
10. $0 \rightarrow \alpha$;

[RMP] \[\frac{\alpha, \alpha \rightarrow \beta}{\beta} \] provided that $\text{var}(\alpha) \subseteq \text{var}(\beta)$.
Connections with IL

Remark

- Axioms (1)–(10) along with unrestricted modus ponens gives a Hilbert system for intuitionistic propositional logic (IL).
- It is easy to check that PIL fails to satisfy modus ponens (MP). However, it satisfies RMP as we will see later.
- Because of the restricted nature of the inference relation, HPIL is weaker than IL.

However, the following result shows that both logics have the same theorems.

Theorem

For any $\varphi \in Fm$, $\vdash \# \varphi$ if and only if $\vdash_{IL} \varphi$.
Connections with IL

Proof Outline

(\implies) Immediate, since the axioms (1)–(10) are axioms of IL and RMP is also an instance of MP.

(\impliedby)

- Suppose $\vdash_{\text{IL}} \varphi$ and $D = \langle \varphi_1, \ldots, \varphi_n \rangle$ is a proof of φ in IL.
- We use induction on the length n of D.
- In the inductive step, suppose $\varphi = \varphi_l$ is obtained by MP from φ_i and $\varphi_j = \varphi_i \rightarrow \varphi$, where $i, j < l$.
- By the induction hypothesis, there are proofs of φ_i, φ_j in HPIL. Let $\langle \psi_1, \ldots, \psi_m \rangle$ be the result of gluing these HPIL proofs so that $\psi_k = \varphi_i (k < m)$ and $\psi_m = \varphi_j = \varphi_i \rightarrow \varphi$.
Connections with IL

Proof Outline

- We use a substitution of variables: \(\sigma(p) = \begin{cases} p & \text{if } p \in \text{var}(\varphi) \\ a & \text{otherwise} \end{cases} \), where \(a \) is some fixed variable in \(\varphi \) or 0 if \(\text{var}(\varphi) = \emptyset \).
- Note that \(\langle \sigma(\psi_1), \ldots, \sigma(\psi_m) \rangle \) is still a proof in HPIL.
- Now, \(\sigma(\psi_m) = \sigma(\psi_k \rightarrow \varphi) = \sigma(\psi_k) \rightarrow \sigma(\varphi) = \sigma(\psi_k) \rightarrow \varphi \).
 Moreover, \(\text{var}(\sigma(\psi_k)) \subseteq \text{var}(\varphi) \), by definition of \(\sigma \).
- Thus \(\varphi \) follows from \(\sigma(\psi_k) \) and \(\sigma(\psi_m) \) by an application of RMP, and \(\langle \sigma(\psi_1), \ldots, \sigma(\psi_k), \ldots, \sigma(\psi_m), \varphi \rangle \) is a proof of \(\varphi \) in HPIL.
Theorem (Restricted Deduction Theorem)

For any $\Sigma \cup \{\alpha, \beta\} \subseteq \text{Fm}$, we have the following.

(i) $\Sigma \cup \{\alpha\} \vdash \# \beta$ implies $\Sigma \vdash \# \alpha \rightarrow \beta$. In particular, if $\alpha \vdash \# \beta$ then $\vdash \# \alpha \rightarrow \beta$.

(ii) If $\Sigma \vdash \# \alpha \rightarrow \beta$ and $\text{var}(\alpha) \subseteq \text{var}(\beta)$, then $\Sigma \cup \{\alpha\} \vdash \# \beta$. In particular, if $\vdash \# \alpha \rightarrow \beta$ and $\text{var}(\alpha) \subseteq \text{var}(\beta)$, then $\alpha \vdash \# \beta$.
1. Paraconsistency

2. Paraconsistent intuitionistic logic

3. Axiomatization

4. Soundness and Completeness

5. Conclusion
Soundness

Lemma

For any $\varphi \in Fm$, if $\vdash \# \varphi$, then $\models \# \varphi$.

Proof Outline

- Let $A \# \in S$ and $v \# : Fm \rightarrow A \#$ be any valuation.
- If for some variable $p \in \text{var}(\varphi)$, $v \#(p) = \omega$, then $v \#(\varphi) = \omega$, and so $\models \# \varphi$.
- If on the other hand, for all $p \in \text{var}(\varphi)$, $v \#(p) \neq \omega$, then $v \#(p) \in A$, the Heyting algebra corresponding to $A \#$, for all $p \in \text{var}(\varphi)$. This implies that $v \#(\varphi) \in A$. We construct the valuation $v : Fm \rightarrow A$ as follows.

$$v(p) = \begin{cases} v \#(p) & \text{if } p \in \text{var}(\varphi) \\ a_0 & \text{otherwise,} \end{cases} \quad \text{where } a_0 \in A \ (\text{fixed})$$

- Then $v(\varphi) = v \#(\varphi)$. Now, since $\vdash \# \varphi$, $\vdash_{IL} \varphi$ which implies that $v \#(\varphi) = v(\varphi) = 1$. Hence $\models \# \varphi$.
Soundness

Lemma

Suppose $\varphi, \psi \in Fm$ with $\text{var}(\varphi) \subseteq \text{var}(\psi)$. Then for any $A\# \in S$, and any valuation $v\# : Fm \rightarrow A\#$, if $v\#[\{\varphi, \varphi \rightarrow \psi\}] \subseteq \{1, \omega\}$, then $v\#(\psi) \in \{1, \omega\}$. That is, RMP preserves validity.

Proof Outline

- Suppose not. Then $v\#[\{\varphi, \varphi \rightarrow \psi\}] \subseteq \{1, \omega\}$, but $v\#(\psi) \notin \{1, \omega\}$.
- So $v\#(p) \neq \omega$ for all $p \in \text{var}(\psi)$. Then $v\#(\psi) \in A$, the Heyting algebra corresponding to $A\#$.
- Let $v\#(\psi) = a \in A$, where $a < 1$.
- Since $\text{var}(\varphi) \subseteq \text{var}(\psi)$, $v\#(p) \neq \omega$ for all $p \in \text{var}(\varphi)$, and hence $v\#(\varphi), v\#(\varphi \rightarrow \psi) = 1$.
- Then $v\#(\varphi \rightarrow \psi) = 1 \rightarrow a$.
- For any $a \in A$, $1 \rightarrow a = a$, $v\#(\varphi \rightarrow \psi) = a < 1$. This is a contradiction.
Soundness

Theorem (Soundness)
For all $\Sigma \cup \{\alpha\} \subseteq Fm$, if $\Sigma \vdash \# \alpha$, then $\Sigma \models \# \alpha$.

Proof
Straightforward from the two lemmas.
Completeness

Theorem

For any $\varphi \in Fm$, if $\models \# \varphi$ then $\vdash \# \varphi$.

Proof.

- Suppose $\models \# \varphi$.
- Then $\models_{IL} \varphi$.
- We know that IL is complete with respect to valuations in Heyting algebras. So $\vdash_{IL} \varphi$.
- Hence $\vdash \# \varphi$.

Completeness

Theorem (Completeness)

For all $\Sigma \cup \{\alpha\} \subseteq Fm$, if $\Sigma \models \# \alpha$, then $\Sigma \vdash \# \alpha$.

Proof.

- Suppose $\Sigma \models \# \alpha$ and $\Sigma \neq \emptyset$.
- Then there exists a finite $\Delta \subseteq \Sigma$ with $\text{var}(\Delta) \subseteq \text{var}(\alpha)$ such that $\Delta \models_{IL} \alpha$.
- Now, by the completeness of IL with respect to valuations in Heyting algebras, $\Delta \vdash_{IL} \alpha$.
- Let $\Delta = \{\varphi_1, \ldots, \varphi_n\}$. Then by applying the deduction theorem in IL n times, we have $\vdash_{IL} (\varphi_1 \rightarrow (\ldots \rightarrow (\varphi_n \rightarrow \alpha)\ldots))$.
- Then $\vdash \# (\varphi_1 \rightarrow (\ldots \rightarrow (\varphi_n \rightarrow \alpha)\ldots))$.
- Now, since $\text{var}(\Delta) \subseteq \text{var}(\alpha)$, by applying the converse of the Deduction theorem n times, we have $\Delta \vdash \# \alpha$.
- Finally, since $\Delta \subseteq \Sigma$, we have $\Sigma \vdash \# \alpha$.
Scheme

1. Paraconsistency
2. Paraconsistent intuitionistic logic
3. Axiomatization
4. Soundness and Completeness
5. Conclusion
Concluding Remarks

- ECQ fails in HPIL. To see this, consider $\alpha = p$ and $\beta = q$ where p, q are variables, and a valuation $v^\# : Fm \rightarrow A^\#$, where $A^\# \in S$, such that $v^\#(p) = \omega$ and $v^\#(q) = 0$. Then $\{\alpha, \neg\alpha\} \not\models^\# \beta$. Then, by the Soundness Theorem, $\{\alpha, \neg\alpha\} \nvdash^\# \beta$. Thus HPIL is paraconsistent.

- Interestingly, however, $0 \rightarrow \alpha$ is an axiom of HPIL.

- For any $\alpha \in Fm$, $\neg(\alpha \land \neg\alpha)$ is a theorem of IL and hence of HPIL. Thus the law of non-contradiction holds in HPIL.

- However, it is noteworthy that the sentence $\alpha \land \neg\alpha$ is not always false either. To see this, take $\alpha = p$, a variable and a valuation $v^\#$ such that $v^\#(p) = \omega$.
Thank You