Specifying Program Properties Using Modal
Fixpoint Logics

Martin Lange

University of Kassel, Germany

8th Indian Conference on Logic and its Applications
04/03/19

© Motivation

© Specifying Properties using Modal Fixpoint Logic
@ The Modal p-Calculus
@ Higher-Order Fixpoint Logic
@ Computational Complexity and Decidability
@ Automata, Logic, Games
@ Fixpoint Quantifier Alternation
@ Polyadic Higher-Order Fixpoint Logic

© Future Work / Open Questions

Martin Lange: HFL — Motivation —

Verification of Reactive Systems

general motivation: formal verification of dynamic systems

typical ICT systems are reactive:

Allocate
Resources

0 Operating
&

Monitors
Activities

Disks & Files

Martin Lange: HFL — Motivation —

Requirements for Specification Languages

generally needed for formal verification: formal specification
languages, i.e. logics

especially needed for specifying properties of reactive systems: to
speak about . ..

® . .immediate behaviour: modal operators
“it is possible to react to any input of the form ...’
~ O, L

® .. behaviour in the infinite: limit operators
“every request is eventually granted’
convenient tool: least and greatest fixpoints
~ X (X)), vX.p(X)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

The Modal ;-Calculus

multi-modal logic + extremal fixpoint quantifiers

o = p|X|eVel|-p|(ap|uX.p

usual abbreviations: ¢ A ¢, ¢ — 1, [a]e = —(a)—,
vX.p = —uX.—p[-X/X]

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

The Modal ;-Calculus

multi-modal logic + extremal fixpoint quantifiers

o = p|X|eVel|-p|(ap|uX.p

usual abbreviations: ¢ A ¢, ¢ — 1, [a]e = —(a)—,
vX.p = —uX.—p[-X/X]

interpreted over transition system
T=(5{2>acA}L:S—2P)

semantics usually given as [[go]]Z C S with Knaster-Tarski

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

Examples

typical £,-definable properties:

e vX.(a)X

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

Examples

typical £,-definable properties:
e vX.(a)X
e uX.pV (Ott AOX) (= AFp in CTL)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

Examples

typical £,-definable properties:
e vX.(a)X
e uX.pV (Ott AOX) (= AFp in CTL)
° uX.[a]X

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

Examples

typical £,-definable properties:
e vX.(a)X
e uX.pV (Ott AOX) (= AFp in CTL)
° uX.[a]X
o vX.uY.O((pAX)VY)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

The Expressive Power of L,

Theorem 1 (Emerson/Jutla '88; Janin/Walukiewicz '96)

A bisimulation-invariant tree language is L, -definable iff it is
regular

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

The Expressive Power of L,

Theorem 1 (Emerson/Jutla '88; Janin/Walukiewicz '96)

A bisimulation-invariant tree language is L, -definable iff it is
regular

typical properties that are not £,-definable:

e uniform inevitability,
something holds on all paths at the same time

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

The Expressive Power of L,

Theorem 1 (Emerson/Jutla '88; Janin/Walukiewicz '96)

A bisimulation-invariant tree language is L, -definable iff it is
regular

typical properties that are not £,-definable:

e uniform inevitability,
something holds on all paths at the same time

® unlimited counting like O-buffer properties

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

The Expressive Power of L,

Theorem 1 (Emerson/Jutla '88; Janin/Walukiewicz '96)

A bisimulation-invariant tree language is L, -definable iff it is
regular

typical properties that are not £,-definable:

e uniform inevitability,
something holds on all paths at the same time

® unlimited counting like O-buffer properties

® repetitions of unbounded sequences of actions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal p-Calculus

The Expressive Power of L,

Theorem 1 (Emerson/Jutla '88; Janin/Walukiewicz '96)

A bisimulation-invariant tree language is L, -definable iff it is
regular

typical properties that are not £,-definable:

e uniform inevitability,
something holds on all paths at the same time

® unlimited counting like O-buffer properties

® repetitions of unbounded sequences of actions

© Motivation

9 Specifying Properties using Modal Fixpoint Logic

@ Higher-Order Fixpoint Logic

© Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Types
we need a simple type system with variances
T = Pr|i7t¥ =71
v o= +|—|0

because of right-associativity: 7 =7y — ... — 747 — Pr

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Types
we need a simple type system with variances
T = Pr|i7t¥ =71
v o= +|—|0

because of right-associativity: 7 =7y — ... — 747 — Pr

for a partial order V = (M, C) let
vt =M,c) VvV =M1 V=W =

)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Types
we need a simple type system with variances
T = Pr|i7t¥ =71
v o= +|—|0

because of right-associativity: 7 =7y — ... — 747 — Pr

for a partial order V = (M, C) let
vt =M,Cc) VvV =M1 V=M=

each type induces a complete lattice over transition system
T = (S,—, L) using pointwise orderings C

[P = (2°.C)

I[Uv — 7—]] = (I[U]]V —7monotone IIT]]; E)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic
Formulas

HFL = modal p-calculus + simply typed A-calculus
[Viswanathan? '04]

o = p|X|eVel-pl(@e|lpX w|lAX plep

10

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic
Formulas

HFL = modal p-calculus + simply typed A-calculus
[Viswanathan? '04]

o = p|X|pVel|p|@e|u(X:1)p [MX":T)e|pe

well-formedness condition given by type system

needed to exclude (a)q (b)p, uX.—X, etc.

10

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic
Formulas

HFL = modal p-calculus + simply typed A-calculus
[Viswanathan? '04]

o = p|X|pVel|p|@e|u(X:1)p [MX":T)e|pe

well-formedness condition given by type system

needed to exclude (a)q (b)p, uX.—X, etc.
often use more convenient syntax, e.g.

nF(X,g).=X Vv F(g(X),g?)
instead of

w(F:Pr~ — (Prt — Pr)™ — Pr).A(X:Pr).\(g:Prt — Pr).
~XVF (g X)(MY:PrT).g (g Y))))

10

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Negation is Trickier

why not simple condition as in the modal p-calculus

every fixpoint variable occurs under an even number of
negation symbols in its defining fixpoint formula

e.g. uX.—uY.(a)-X V(b)Y

11

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 11

Negation is Trickier

why not simple condition as in the modal p-calculus

every fixpoint variable occurs under an even number of
negation symbols in its defining fixpoint formula

e.g. uX.—uY.(a)-X V(b)Y

A-abstraction can shift negations into different branches of the
syntax tree, e.g. uX.(A\Y.=Y) X

this formula is not well-formed

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 12

The Typing Rules

© well-formed iff () = ¢ : Pr is derivable

ve{0,+} M~ Fe:Pr
M=p:Pr MXYrkEX:or = —=p:Pr
M=p:Pr THY:Pr M=p:Pr MXV:iokop:r
M=evay:Pr M (a)p:Pr FrEXXY:io)p:(6¥ — 1)
p:(cT=71) ThEY:0o lrFp:(c-—=71) T"FY:o
N CEDRE FE(pd):r
TEei(e®—=7) THY:o T Fyio LXTirkeir

FE(py):r Mep(X:m)p:r

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 13

Semantics of HFL

semantics of formula ¢ with O - ¢ : 7 is element of [7] over
transition system 7 = (S, —, L)

[F+p: Pr]]nT

[re=x:717

[r+ —u,a:Pr]]Z

[FE=gp:ov 4)7']]7]7
[FEeve:Pdl

[T {(a)p: Pr]][
[TEXXY:i0)p:o” — T]]nT

[r=e 1/1:7’]],77
[rt p(X: T)L,OZT]]UT

{seS|pel(s)}
n(X)
S\HF*FQO:Pr]]Z]’
felo"—1]st. FZHF7F¢ZUV*>THZ’
[FE@:PAT U= y:PrT
{seS|s-2tforsomete[lF@:Pr]l}
felo¥ — 7] st Vx € [o]

fx= [[I',X":aFcp:T]]nT[X._)X]
[FEeiov =717 M o]l
[Hx el |[r,X+:TF<p:TﬂZ—[XHX] C, x}

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 13

Semantics of HFL

semantics of formula ¢ with O - ¢ : 7 is element of [7] over
transition system 7 = (S, —, L)

[F+p: Pr]]nT

[r=x:77 =

[rk—up:Pr]]?{ =

[F+-p:ov =7l =
[FEevy:Pl =

[re= (a><p:Pr]]Z =
[FTEXXY:i0)p:a” *}T]]WT =

[r=e 1/):7—]],]7
[rt p(X: T)L,OZT]]UT

{sesS|pel(s)}
n(X)
S\IIF7F<,OZPI']]Z]—
felo"—1]st. f:[F*}—cpza"%T]]Z—
[FE@:PAT U= y:PrT
{seS|s-2tforsomete[lF@:Pr]l}
felo¥ — 7] st Vx € [o]

fx= [[I',X":aFcp:T]]nT[X._)X]
[FEeiov =717 M o]l
[Hx el |[r,X+:TF<p:TﬂZ—[XHX] C, x}

Prop. 1: (A(X:7).) ¥ = [/ X] (8-reduction)
Prop. 2: p(X:7).0 = p[(1(X : 7))/ X] (fixpoint unfolding)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Examples

what properties are expressed by the following formulas?

(/LF(X).X \Y (a)F((b)X)) tt

14

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Examples

what properties are expressed by the following formulas?

(LF(X).X Vv F(OX)) £

14

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Examples

what properties are expressed by the following formulas?

Puord 1= ¥b (LF(X,Y). (XA Y)VF(OX,0Y)) (a)tt (b)tt

14

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Examples

what properties are expressed by the following formulas?

(1F(g.8",8")- (gog'0g") V F(go(a), g'o(b), g"0(c))) id id id tt
where id := AX.X, (a) := AX.(a)X, and fog := AX.f (g X)

14

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Examples

what properties are expressed by the following formulas?

(vF(X).[0)X A [alF(F(X)) £

14

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Examples

what properties are expressed by the following formulas?

(1F(g)- (gog) Vv \e/z F(go(a))) id tt

14

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic

Examples

what properties are expressed by the following formulas?

Um Um_1 ... 1 O OFF where ¢ := AFAX.F (F X)

14

© Motivation

9 Specifying Properties using Modal Fixpoint Logic

@ Computational Complexity and Decidability

© Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability

Fragments by Type Order

type order: ord(t1 — ... = Tm — Pr) = max{1 + ord(7;)}

HFLX™ = well-formed formulas using type annotations of order at
most k and at most m arguments

16

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability

Fragments by Type Order

type order: ord(my — ... — T — Pr) = max{1 + ord(7;)}
HFLX™ = well-formed formulas using type annotations of order at
most k and at most m arguments

recall examples above:

order 1: “balanced tree”, “bisimilarity to a word”, all CFL path
properties, some CSL path properties

16

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability

Fragments by Type Order

type order: ord(t1 — ... = Tm — Pr) = max{1 + ord(7;)}

HFLX™ = well-formed formulas using type annotations of order at
most k and at most m arguments

recall examples above:

order 1: “balanced tree”, “bisimilarity to a word”, all CFL path
properties, some CSL path properties

order 2: (all?) CSL path properties

16

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 16

Fragments by Type Order

type order: ord(t1 — ... = Tm — Pr) = max{1 + ord(7;)}

HFLX™ = well-formed formulas using type annotations of order at
most k and at most m arguments

recall examples above:

order 1: “balanced tree”, “bisimilarity to a word”, all CFL path
properties, some CSL path properties

order 2: (all?) CSL path properties
2"

order k: measure path lengths up to 2"

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 17

Model Checking HFL

Theorem 2 (Axelsson/L./Somla '07)

For k > 1, m > 0: model checking HFL*™ is k-EXPTIME-compl.

PROOF SKETCH: (upper bounds) consider height of lattices [7]:
m
height(t1 = ... = Tm — Pr) = (n+1)- H [[7]
i=1

with
1 = ...7m = Pr]| = onTIZ [I71I

~> naive bottom-up evaluation in time dominated by lattice height

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability

Model Checking: Lower Bounds

for lower bounds: reduction from the word problem for alternating
(k—1)-EXPSPACE Turing machines

main ingredients:

® representation of large numbers by (lexicographically ordered)
functions

® stepwise counting in HFL

let inc := AX.X < O—X, what is inc(0)?

18

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability

Model Checking: Lower Bounds

for lower bounds: reduction from the word problem for alternating
(k—1)-EXPSPACE Turing machines

main ingredients:

® representation of large numbers by (lexicographically ordered)
functions

® stepwise counting in HFL

let inc := AX.X < O—X, what is inc(0), inck(0) for k > 17

18

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability

Model Checking: Lower Bounds

for lower bounds: reduction from the word problem for alternating
(k—1)-EXPSPACE Turing machines
main ingredients:

® representation of large numbers by (lexicographically ordered)
functions

® stepwise counting in HFL

let inc := AX.X < O—X, what is inc(0), inck(0) for k > 17

principle extendable to higher orders using tests for equality,
less-than, greater-than

~» simulate run of space-bounded Turing machines

18

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 19

Tail Recursion

Def.: tail-recursive fragment trHFL intuitively: fixpoint variables of
highest type ...

® not in both conjuncts ~» no (a)X(b)X
® not behind modal box operators ~ no [a] X
® not in argument position ~ no AFAX.F(F(X))

formal definition via type system [[Bruse '18]]

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 19

Tail Recursion

Def.: tail-recursive fragment trHFL intuitively: fixpoint variables of
highest type ...

® not in both conjuncts ~» no (a)X(b)X
® not behind modal box operators ~ no [a] X
® not in argument position ~ no AFAX.F(F(X))

formal definition via type system [[Bruse '18]]

Theorem 3 (Bruse/L./Lozes '17)

For k > 1, m > 0: model checking trHFLk™ s
(k — 1)-EXPSPACE-complete

PROOF: lower bound: similar
upper bound: use nondeterministic top-down algorithm and
Savitch's Theorem

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 20

Undecidability of Satisfiability

Theorem 4
Satisfiability for HFL' is undecidable (at least ¥1-hard)

follows from undecidability of Fixpoint Logic with Chop
[Miiller-Olm, '99] and embedding into HFL! [Viswanathan?, '04]

undecidability not hard to see:

Pword /\ \/ tt A \/

welL(Gy) weL(Gy)

expresses non-emptiness of intersection between CFGs Gy and G

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 21

No Finite Model Property

decidability of model checking and Z%—hardness of satisfiability
implies loss of finite model property

also possible to see directly

HFL! does not have the finite model property.

PROOF:

(1X.OX) A (VF(Y).Y AF(OY))

forbids infinite paths but requires paths of unbounded length O

© Motivation

9 Specifying Properties using Modal Fixpoint Logic

@ Automata, Logic, Games

© Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

The Automata-Logic-Games Connection

automata and games are important computational tools for
temporal logics

Theorem 6 (Stirling '95, Walukiewicz '96)

Model Checking pi-calculus = solving parity games.

Def.: parity game is a 2-player game on graphs where nodes have
priorities. Player VERIFIER wins infinite play iff outermost fixpoint
seen infinitely often is of type v

Ex.:

P ?
—(U)—()a E @X.pY.O((pAX)VY)

28

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Stair-Parity Games

HFL model checking is not a parity game

Ex.: consider

OO b = (1FX)-(B)X v (2 G.F(G))

24

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Stair-Parity Games

HFL model checking is not a parity game

Ex.: consider
OO b = (1FX)-(B)X v (2 G.F(G))

refinement needed here

observation for HFLY!: fixpoints have 1 argument ~~ recursion call
stack

Def.: stair-parity game is pushdown game with parity condition
evaluated on persistent part of call stack

Theorem 7 (L. '02, L. '06)

Model checking HFLY'' = stair-parity game

24

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Games for HFL

for general HFL further extension needed; best formulated as
abstract automaton model with acceptance game

proposed automaton model: Alternating Parity Krivine Automata
(APKA)

e alternation for Boolean and modal operators (V, A, (a), [b])

25

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Games for HFL

for general HFL further extension needed; best formulated as
abstract automaton model with acceptance game

proposed automaton model: Alternating Parity Krivine Automata
(APKA)

e alternation for Boolean and modal operators (V, A, (a), [b])

® (stair-)parity condition for fixpoints

25

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Games for HFL

for general HFL further extension needed; best formulated as
abstract automaton model with acceptance game

proposed automaton model: Alternating Parity Krivine Automata
(APKA)

e alternation for Boolean and modal operators (V, A, (a), [b])
® (stair-)parity condition for fixpoints

e Krivine Abstract Machine for higher-order features

25

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Games for HFL

for general HFL further extension needed; best formulated as
abstract automaton model with acceptance game

proposed automaton model: Alternating Parity Krivine Automata
(APKA)

e alternation for Boolean and modal operators (V, A, (a), [b])
® (stair-)parity condition for fixpoints

e Krivine Abstract Machine for higher-order features

challenge: get acceptance condition right, i.e. synchronise parity
condition with Krivine machine

25

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Alternating Parity Krivine Automata
APKA of index mis A = (X,6,1,\,(7x)xex) where

e finite set of (fixpoint) states X = {Xi,..., Xy}

26

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 26

Alternating Parity Krivine Automata
APKA of index mis A = (X,6,1,\,(7x)xex) where

e finite set of (fixpoint) states X = {Xy,..., Xy}
® priority function A: X — [1, m], resp. [0, m — 1]

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Alternating Parity Krivine Automata
APKA of index mis A = (X,6,1,\,(7x)xex) where

e finite set of (fixpoint) states X = {Xi,..., Xy}
® priority function A: X — [1, m], resp. [0, m — 1]

® transition function ¢ : X — @x, generated from

Yu=P|=P|yAy vy | (@] [aw] XX | ()

X .. X : i
where 7 7% for i < nx and px :7x.

state space is Q@ = X U [y sub(d(X))

26

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Alternating Parity Krivine Automata
APKA of index mis A = (X,6,1,\,(7x)xex) where

e finite set of (fixpoint) states X = {Xi,..., Xy}
® priority function A: X — [1, m], resp. [0, m — 1]

® transition function ¢ : X — @x, generated from

Yu=P|=P|yAy vy | (@] [aw] XX | ()

X .. X : i
where 7 7% for i < nx and px :7x.

® assignment of argument and value types

X X X
™ = T1 —>"'—>7_nx—>7_nx+l

state space is Q@ = X U [y sub(d(X))

26

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Alternating Parity Krivine Automata
APKA of index mis A = (X,6,1,\,(7x)xex) where

e finite set of (fixpoint) states X = {Xy,..., Xy}
® priority function A: X — [1, m], resp. [0, m — 1]

® transition function ¢ : X — @x, generated from

Yu=P|=P|yAy vy | (@] [aw] XX | ()

X .. X : i
where 7 7% for i < nx and px :7x.

® assignment of argument and value types

X X X
™ = T1 —>"'—>7_nx—>7_nx+l

® | € X initial state with 7/ = Pr
state space is Q@ = X' U [y sub(d(X))

26

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Environments and Closures

acceptance of an LTS by an APKA explained as 2-player game on
configurations

C = (s,(¢,e),€,I,A)

where

® s s current state in LTS

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse '18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

27

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 27

Environments and Closures

acceptance of an LTS by an APKA explained as 2-player game on
configurations

C = (s,(¢,e),€,I,A)
where
® s s current state in LTS

® (1, e) current closure with 1) € Q, e € £ environment binding
variables to closures

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse '18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 27

Environments and Closures

acceptance of an LTS by an APKA explained as 2-player game on
configurations

C = (s,(¢,e),€,I,A)
where
® s s current state in LTS

® (1, e) current closure with 1) € Q, e € £ environment binding
variables to closures

e ¢’ distinguished environment (point of current computation)

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse '18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games

Environments and Closures

acceptance of an LTS by an APKA explained as 2-player game on
configurations
C = (s,(¢,e),€,I,A)
where
® s is current state in LTS

® (1, e) current closure with 1) € Q, e € £ environment binding
variables to closures

e ¢’ distinguished environment (point of current computation)
® [= (¢n,ei),-..,(11,e;) stack of closures

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse '18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

27

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games
Environments and Closures
acceptance of an LTS by an APKA explained as 2-player game on

configurations

C

(s, (¢, e),€,T,A)
where
® s s current state in LTS

® (1, e) current closure with 1) € Q, e € £ environment binding
variables to closures

e ¢’ distinguished environment (point of current computation)
® [= (¢n,ei),-..,(11,e;) stack of closures

® A stack of priorities

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse '18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

27

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 28

(Tree) Automata and Logics

Theorem 8 (Bruse '18)

HFL* = order-k APKA

can be seen as generalisation of

Theorem 9 (Emerson/Jutla '91)

p-calculus = alternating parity tree auomata

important for what follows:

the acceptance game for an order-1 APKA on a binary tree can be
encoded as a binary tree again

~> strictness of fixpoint alternation

© Motivation

9 Specifying Properties using Modal Fixpoint Logic

@ Fixpoint Quantifier Alternation

© Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation

Fixpoint Alternation in the u-Calculus

fixpoint alternation . ..
¢ by example: vX.uY.O((pAX)VY)
® intuitively: inner fixpoint formula depends on outer of different
type

30

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation

Fixpoint Alternation in the u-Calculus

fixpoint alternation . ..
® by example: vX.uY.O((p A X)VY)
® intuitively: inner fixpoint formula depends on outer of different
type
fixpoint alternation is obstacle for specifying program properties:
® computationally: requires fixpoint iterations to be nested

® pragmatically: makes formulas harder to understand

but ...

Theorem 10 (Bradfield '96, Arnold '99,...)

The alternation hierarchy in L, is strict.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 31

Fixpoint Alternation in HFL

Obs.: according to “standard” def., every HFL formula is
equivalent to an alternation-free one

Ex.: vX.uY.(pAOX)VOY = vX.(AZ.pY.(pAOZ)VOY) Z)

~> fixpoint alternation hidden through higher types

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 31

Fixpoint Alternation in HFL

Obs.: according to “standard” def., every HFL formula is
equivalent to an alternation-free one

Ex.: vX.uY.(pAOX)VOY = vX.(AZ.pY.(pAOZ)VOY) Z)

~> fixpoint alternation hidden through higher types

alternative suggestion: use automata-logic connection

Def.: alternation index of an HFL formula of order k is the
smallest number of priorities of an equivalent APKA of order k

Ex. (cont.): vX.uY.(p A OX) has equivalent APKA
e of order 0 with priorities {1,2}
e of order 1 with priorities {0, 1}

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation

Fixpoint Alternation I: Strictness

higher-order does not conquer fixpoint alternation

Theorem 11 (L. '02, Bruse '18)

The alternation hierarchy in HFL' is strict.

PROOF IDEA: uses encoding of order-1 APKA run on binary tree
as binary tree and Banach’s Fixpoint Theorem, cmp. [Arnold, '99]

there are hard APKA Ag that define acceptance:
te L(A) iff run(A,t) € L(A)

~ L(Ap) requires different fixpoint alternation

32

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation

Fixpoint Alternation Il: Collapses |

link to loss of small model property:

Theorem 12 (Bruse/L./Lozes '17)

The L,, fixpoint alternation hierarchy collapses over finite
structures into alternation-free HFL!.

PROOF: use fact that on finite structures fixpoint iteration stops
after finitely many steps

greatest fixpoint iteration can be expressed as a least fixpoint of
order 1:

vXp(X) = (WFAX(XADTF(X = o(X)) V (F (X))

33

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation

Fixpoint Alternation Il: Collapses Il

trick can be extended to order 1

Theorem 13 (Bruse/L./Lozes '17)

The HFL! fixpoint alternation hierarchy collapses over finite
structures into alternation-free HFL?.

problem here: test whether greatest fixpoint of order 1 has been
reached: "V.X : f(X) C o(f)(X)"

34

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation

Fixpoint Alternation Il: Collapses Il

trick can be extended to order 1

Theorem 13 (Bruse/L./Lozes '17)

The HFL! fixpoint alternation hierarchy collapses over finite
structures into alternation-free HFL?.

problem here: test whether greatest fixpoint of order 1 has been
reached: "V.X : f(X) C o(f)(X)"

possible to enumerate all sets X on linearly ordered structures but

impossible on general structures due to bisimulation-invariance

observation: “V modally definable X : f(X) C ¢(f)(X)" suffices!

vH(t).(/\ t(p)) A [\ HOx.t((a)x)

peP acA
A HAx.t(=x)) AN HOx.H(Ay.t(x V y)))

34

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 35

Fixpoint Alternation ll: Collapse Ill
technique can be extended even further
note: order-2 function has order-1 functions as arguments

~> need to enumerate all functions of the form Axj ... Axm,.0 with
modal ¢ when checking for termination of fixpoint iteration, e.g.
for m=1:

vH(t).(/\ t(Ax.p)) A t(Ax.x) A HAF.t(Ax.=f(x)))
peP

A I\ HOFt(Ax(a)f(x))) A HORHA .t (Ax.A(x) V f2(x))))
acA

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 35

Fixpoint Alternation ll: Collapse Ill
technique can be extended even further
note: order-2 function has order-1 functions as arguments

~> need to enumerate all functions of the form Axj ... Axm,.0 with
modal ¢ when checking for termination of fixpoint iteration, e.g.
for m=1:

vH(t).(/\ t(Ax.p)) A t(Ax.x) A HAF.t(Ax.=f(x)))
peP

A I\ HOFt(Ax(a)f(x))) A HORHA .t (Ax.A(x) V f2(x))))
acA

Theorem 14 (Bruse/L./Lozes '17)

The HFL? fixpoint alternation hierarchy collapses over finite
structures into alternation-free HFL3.

© Motivation

9 Specifying Properties using Modal Fixpoint Logic

@ Polyadic Higher-Order Fixpoint Logic

© Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic

Polyadic Modal Logics

p-calculus and HFL (etc.) are monadic: they define a set of states
in each TS

polyadic modal logics are interpreted in tuples ~» define relations
of predetermined arity

syntactic solution: use tokens / names 1,2,... r

classic example [Andersen '94; Otto '99]

vX.(/\ p(1) = A\ [al(@)2X) A {1 < 23X

peP acex

37

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic

Polyadic Modal Logics

p-calculus and HFL (etc.) are monadic: they define a set of states

in each TS

polyadic modal logics are interpreted in tuples ~» define relations
of predetermined arity

syntactic solution: use tokens / names 1,2,... r
classic example [Andersen '94; Otto '99]
pbis == vX.(\ p(1) = A\ [al(@)2X) A {1 < 23X
peP acex

defines bisimilarity ~; in general:

Theorem 15 (Otto '99)

PHFL® = PTIME/~

37

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 38
Polyadic Higher-Order Fixpoint Logic
polyadicity can be integrated into HFL ~~ PHFL

pu=pi) [X|eVel-p|{aip|{steuX:m)e | MX:T)e|ep

with 1 </ <rand k : [r] — [r] for some fixed arity r > 1

all other notions extend straight-forwardly with [Pr] = 2°"

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic

Polyadic Higher-Order Fixpoint Logic
polyadicity can be integrated into HFL ~~ PHFL
pu=p(i) | X oVel-pl{a)ig|[{rte | m(X:T)e | AMX":7T)0| @
with 1 </ <rand k : [r] — [r] for some fixed arity r > 1

all other notions extend straight-forwardly with [Pr] = 2°"

Ex.: (VF(X, Y).(X = Y) A A F((@)X. (a)2Y)) fin(1) fin(2)

38

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 38

Polyadic Higher-Order Fixpoint Logic

polyadicity can be integrated into HFL ~~ PHFL

pu=pi) [X|eVel-p|{aip|{steuX:m)e | MX:T)e|ep

with 1 </ <rand k : [r] — [r] for some fixed arity r > 1
all other notions extend straight-forwardly with [Pr] = 2°"

Ex.: (VF(X, Y).(X—=Y)A é\z F((a)1X, (a)2 Y)) fin(1) fin(2)
expresses NFA universality ’

note: PHFL! can express PSPACE-complete problems

what exactly is the expressive power of each PHFLX?

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic

Declarative Complexity Theory

PHFL is a natural specification language for
bisimulation-invariant properties

Theorem 16 (L./Lozes '14, Kronenberger '18)
@ PHFL¥ = k-EXPTIME/~ for k >0

39

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic

Declarative Complexity Theory

PHFL is a natural specification language for
bisimulation-invariant properties

Theorem 16 (L./Lozes '14, Kronenberger '18)

@ PHFL¥ = k-EXPTIME/~ for k >0
Q@ tail-recursive PHFLX = (k — 1)-EXPSPACE/~ for k > 0

39

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 39

Declarative Complexity Theory

PHFL is a natural specification language for
bisimulation-invariant properties

Theorem 16 (L./Lozes '14, Kronenberger '18)

@ PHFL¥ = k-EXPTIME/~ for k >0
Q@ tail-recursive PHFLX = (k — 1)-EXPSPACE/~ for k > 0

PROOF: upper bounds by reduction of model checking problems
from PHFLX to HFLK

lower bounds with the help of intermediate logics using

@ HOKT14LFP = k-EXPTIME [Immerman '87, Freire/Martins '11]

@ HOX*14PFP = k-EXPSPACE
[Abiteboul /Vianu '87, Bruse/Kronenberger 'xx]

© Future Work / Open Questions

Martin Lange: HFL — Future Work / Open Questions — 41

Open Questions: Fixpoint Alternation Strictness

how do fixpoint alternation and type order interact in detail?

Conjecture: the fixpoint alternation hierarchy is strict within each
HFLX and even within HFL over the class of all structures / trees

Martin Lange: HFL — Future Work / Open Questions —

Open Questions: Collapse Classes

collapse Theorems. 12-14 stated for class Ty, of finite structures
can be strengthened

clearly hold for class Tf; of structures with finite bisimulation
quotients

even for classes of structures with finite closure ordinals

42

Martin Lange: HFL — Future Work / Open Questions —

Open Questions: Collapse Classes

collapse Theorems. 12-14 stated for class Ty, of finite structures
can be strengthened

clearly hold for class Tf; of structures with finite bisimulation
quotients

even for classes of structures with finite closure ordinals
Conjecture: all inclusions in

T 2 The 2 - 2 [Th 2 Tin 2 T

=

are strict where Tén = structures on which HFL*-definable fixpoint

iterations stabilise after finitely many steps

42

Martin Lange: HFL — Future Work / Open Questions — 43

Open Questions: A Proof Theory

¥ 1-hardness makes axiomatisability a difficult question

Open question: Are there fragments of PHFL that can be
axiomatised?

benefit: could reduce question after inclusion between program

equivalences / pre-orders to finding proofs in PHFL

Ex.: - Pbis — SOtrace?

The End

	Motivation
	Specifying Properties using Modal Fixpoint Logic
	The Modal -Calculus
	Higher-Order Fixpoint Logic
	Computational Complexity and Decidability
	Automata, Logic, Games
	Fixpoint Quantifier Alternation
	Polyadic Higher-Order Fixpoint Logic

	Future Work / Open Questions

