
Specifying Program Properties Using Modal
Fixpoint Logics

Martin Lange

University of Kassel, Germany

8th Indian Conference on Logic and its Applications
04/03/19

1 Motivation

2 Specifying Properties using Modal Fixpoint Logic
The Modal µ-Calculus
Higher-Order Fixpoint Logic
Computational Complexity and Decidability
Automata, Logic, Games
Fixpoint Quantifier Alternation
Polyadic Higher-Order Fixpoint Logic

3 Future Work / Open Questions

Martin Lange: HFL — Motivation — 3

Verification of Reactive Systems

general motivation: formal verification of dynamic systems

typical ICT systems are reactive:

Martin Lange: HFL — Motivation — 4

Requirements for Specification Languages

generally needed for formal verification: formal specification
languages, i.e. logics

especially needed for specifying properties of reactive systems: to
speak about . . .

• . . . immediate behaviour: modal operators
“it is possible to react to any input of the form . . . ”
 ♦ϕ,�ϕ

• . . . behaviour in the infinite: limit operators
“every request is eventually granted”
convenient tool: least and greatest fixpoints
 µX .ϕ(X), νX .ϕ(X)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 5

The Modal µ-Calculus

multi-modal logic + extremal fixpoint quantifiers

ϕ ::= p | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉ϕ | µX .ϕ

usual abbreviations: ϕ ∧ ψ, ϕ→ ψ, [a]ϕ := ¬〈a〉¬ϕ,
νX .ϕ := ¬µX .¬ϕ[¬X/X]

interpreted over transition system
T = (S , { a−→ | a ∈ A}, L : S → 2P)

semantics usually given as [[ϕ]]Tρ ⊆ S with Knaster-Tarski

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 5

The Modal µ-Calculus

multi-modal logic + extremal fixpoint quantifiers

ϕ ::= p | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉ϕ | µX .ϕ

usual abbreviations: ϕ ∧ ψ, ϕ→ ψ, [a]ϕ := ¬〈a〉¬ϕ,
νX .ϕ := ¬µX .¬ϕ[¬X/X]

interpreted over transition system
T = (S , { a−→ | a ∈ A}, L : S → 2P)

semantics usually given as [[ϕ]]Tρ ⊆ S with Knaster-Tarski

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 6

Examples

typical Lµ-definable properties:

• νX .〈a〉X

• µX .p ∨ (♦tt ∧�X) (≡ AFp in CTL)

• µX .[a]X

• νX .µY .♦((p ∧ X) ∨ Y)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 6

Examples

typical Lµ-definable properties:

• νX .〈a〉X

• µX .p ∨ (♦tt ∧�X) (≡ AFp in CTL)

• µX .[a]X

• νX .µY .♦((p ∧ X) ∨ Y)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 6

Examples

typical Lµ-definable properties:

• νX .〈a〉X

• µX .p ∨ (♦tt ∧�X) (≡ AFp in CTL)

• µX .[a]X

• νX .µY .♦((p ∧ X) ∨ Y)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 6

Examples

typical Lµ-definable properties:

• νX .〈a〉X

• µX .p ∨ (♦tt ∧�X) (≡ AFp in CTL)

• µX .[a]X

• νX .µY .♦((p ∧ X) ∨ Y)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 7

The Expressive Power of Lµ

Theorem 1 (Emerson/Jutla ’88; Janin/Walukiewicz ’96)

A bisimulation-invariant tree language is Lµ-definable iff it is
regular

typical properties that are not Lµ-definable:

• uniform inevitability,
something holds on all paths at the same time

• unlimited counting like IO-buffer properties

• repetitions of unbounded sequences of actions

• . . .

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 7

The Expressive Power of Lµ

Theorem 1 (Emerson/Jutla ’88; Janin/Walukiewicz ’96)

A bisimulation-invariant tree language is Lµ-definable iff it is
regular

typical properties that are not Lµ-definable:

• uniform inevitability,
something holds on all paths at the same time

• unlimited counting like IO-buffer properties

• repetitions of unbounded sequences of actions

• . . .

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 7

The Expressive Power of Lµ

Theorem 1 (Emerson/Jutla ’88; Janin/Walukiewicz ’96)

A bisimulation-invariant tree language is Lµ-definable iff it is
regular

typical properties that are not Lµ-definable:

• uniform inevitability,
something holds on all paths at the same time

• unlimited counting like IO-buffer properties

• repetitions of unbounded sequences of actions

• . . .

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 7

The Expressive Power of Lµ

Theorem 1 (Emerson/Jutla ’88; Janin/Walukiewicz ’96)

A bisimulation-invariant tree language is Lµ-definable iff it is
regular

typical properties that are not Lµ-definable:

• uniform inevitability,
something holds on all paths at the same time

• unlimited counting like IO-buffer properties

• repetitions of unbounded sequences of actions

• . . .

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — The Modal µ-Calculus 7

The Expressive Power of Lµ

Theorem 1 (Emerson/Jutla ’88; Janin/Walukiewicz ’96)

A bisimulation-invariant tree language is Lµ-definable iff it is
regular

typical properties that are not Lµ-definable:

• uniform inevitability,
something holds on all paths at the same time

• unlimited counting like IO-buffer properties

• repetitions of unbounded sequences of actions

• . . .

1 Motivation

2 Specifying Properties using Modal Fixpoint Logic
The Modal µ-Calculus
Higher-Order Fixpoint Logic
Computational Complexity and Decidability
Automata, Logic, Games
Fixpoint Quantifier Alternation
Polyadic Higher-Order Fixpoint Logic

3 Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 9

Types

we need a simple type system with variances

τ ::= Pr | τ v → τ

v ::= + | − | 0

because of right-associativity: τ = τ v1
1 → . . .→ τ vmm → Pr

for a partial order V = (M,v) let

V+ := (M,v) V− := (M,w) V 0 := (M,=)

each type induces a complete lattice over transition system
T = (S,−→, L) using pointwise orderings v

[[Pr]] := (2S ,⊆)

[[σv → τ]] := ([[σ]]v →monotone [[τ]],v)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 9

Types

we need a simple type system with variances

τ ::= Pr | τ v → τ

v ::= + | − | 0

because of right-associativity: τ = τ v1
1 → . . .→ τ vmm → Pr

for a partial order V = (M,v) let

V+ := (M,v) V− := (M,w) V 0 := (M,=)

each type induces a complete lattice over transition system
T = (S,−→, L) using pointwise orderings v

[[Pr]] := (2S ,⊆)

[[σv → τ]] := ([[σ]]v →monotone [[τ]],v)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 9

Types

we need a simple type system with variances

τ ::= Pr | τ v → τ

v ::= + | − | 0

because of right-associativity: τ = τ v1
1 → . . .→ τ vmm → Pr

for a partial order V = (M,v) let

V+ := (M,v) V− := (M,w) V 0 := (M,=)

each type induces a complete lattice over transition system
T = (S,−→, L) using pointwise orderings v

[[Pr]] := (2S ,⊆)

[[σv → τ]] := ([[σ]]v →monotone [[τ]],v)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 10

Formulas

HFL = modal µ-calculus + simply typed λ-calculus
[Viswanathan2 ’04]

ϕ ::= p | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉ϕ | µ

(

X

: τ)

.ϕ | λ

(

X

v : τ)

.ϕ | ϕ ϕ

well-formedness condition given by type system

needed to exclude 〈a〉q 〈b〉p, µX .¬X , etc.

often use more convenient syntax, e.g.

µF (X , g).¬X ∨ F (g(X), g2)

instead of

µ(F : Pr− → (Pr+ → Pr)+ → Pr).λ(X : Pr).λ(g : Pr+ → Pr).

¬X ∨ F (g X) (λ(Y : Pr+).g (g Y))))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 10

Formulas

HFL = modal µ-calculus + simply typed λ-calculus
[Viswanathan2 ’04]

ϕ ::= p | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉ϕ | µ(X : τ).ϕ | λ(X v : τ).ϕ | ϕ ϕ

well-formedness condition given by type system

needed to exclude 〈a〉q 〈b〉p, µX .¬X , etc.

often use more convenient syntax, e.g.

µF (X , g).¬X ∨ F (g(X), g2)

instead of

µ(F : Pr− → (Pr+ → Pr)+ → Pr).λ(X : Pr).λ(g : Pr+ → Pr).

¬X ∨ F (g X) (λ(Y : Pr+).g (g Y))))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 10

Formulas

HFL = modal µ-calculus + simply typed λ-calculus
[Viswanathan2 ’04]

ϕ ::= p | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉ϕ | µ(X : τ).ϕ | λ(X v : τ).ϕ | ϕ ϕ

well-formedness condition given by type system

needed to exclude 〈a〉q 〈b〉p, µX .¬X , etc.

often use more convenient syntax, e.g.

µF (X , g).¬X ∨ F (g(X), g2)

instead of

µ(F : Pr− → (Pr+ → Pr)+ → Pr).λ(X : Pr).λ(g : Pr+ → Pr).

¬X ∨ F (g X) (λ(Y : Pr+).g (g Y))))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 11

Negation is Trickier

why not simple condition as in the modal µ-calculus

every fixpoint variable occurs under an even number of
negation symbols in its defining fixpoint formula

e.g. ¬µX .¬µY .〈a〉¬X ∨ 〈b〉Y

λ-abstraction can shift negations into different branches of the
syntax tree, e.g. µX .(λY .¬Y) X

this formula is not well-formed

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 11

Negation is Trickier

why not simple condition as in the modal µ-calculus

every fixpoint variable occurs under an even number of
negation symbols in its defining fixpoint formula

e.g. ¬µX .¬µY .〈a〉¬X ∨ 〈b〉Y

λ-abstraction can shift negations into different branches of the
syntax tree, e.g. µX .(λY .¬Y) X

this formula is not well-formed

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 12

The Typing Rules

ϕ well-formed iff ∅ ` ϕ : Pr is derivable

Γ ` p : Pr

v ∈ {0,+}
Γ,X v : τ ` X : τ

Γ− ` ϕ : Pr

Γ ` ¬ϕ : Pr

Γ ` ϕ : Pr Γ ` ψ : Pr

Γ ` ϕ ∨ ψ : Pr

Γ ` ϕ : Pr

Γ ` 〈a〉ϕ : Pr

Γ,X v :σ ` ϕ : τ

Γ ` λ(X v :σ).ϕ : (σv → τ)

Γ ` ϕ : (σ+ → τ) Γ ` ψ :σ

Γ ` (ϕ ψ) : τ

Γ ` ϕ : (σ− → τ) Γ− ` ψ :σ

Γ ` (ϕ ψ) : τ

Γ ` ϕ :(σ0 → τ) Γ ` ψ :σ Γ− ` ψ :σ

Γ ` (ϕ ψ) : τ

Γ,X+ : τ ` ϕ : τ

Γ ` µ(X : τ).ϕ : τ

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 13

Semantics of HFL

semantics of formula ϕ with ∅ ` ϕ : τ is element of [[τ]] over
transition system T = (S ,−→, L)

[[Γ ` p : Pr]]Tη = {s ∈ S | p ∈ L(s)}
[[Γ ` X : τ]]Tη = η(X)

[[Γ ` ¬ϕ : Pr]]Tη = S \ [[Γ− ` ϕ : Pr]]Tη

[[Γ ` ¬ϕ :σv → τ]]Tη = f ∈ [[σv → τ]] s.t. f̄ = [[Γ− ` ϕ :σv → τ]]Tη

[[Γ ` ϕ ∨ ψ : Pr]]Tη = [[Γ ` ϕ : Pr]]Tη ∪ [[Γ ` ψ : Pr]]Tη

[[Γ ` 〈a〉ϕ : Pr]]Tη = {s ∈ S | s a−→ t for some t ∈ [[Γ ` ϕ : Pr]]Tη }
[[Γ ` λ(X v :σ).ϕ :σv → τ]]Tη = f ∈ [[σv → τ]] s.t. ∀x ∈ [[σ]]

f x = [[Γ,X v :σ ` ϕ : τ]]Tη[X 7→x]

[[Γ ` ϕ ψ : τ]]Tη = [[Γ ` ϕ :σv → τ]]Tη [[Γ′ ` ψ :σ]]Tη

[[Γ ` µ(X : τ)ϕ : τ]]Tη =
d
{x ∈ [[τ]] | [[Γ,X+ : τ ` ϕ : τ]]Tη[X 7→x] vτ x}

Prop. 1: (λ(X : τ).ϕ) ψ ≡ ϕ[ψ/X] (β-reduction)

Prop. 2: µ(X : τ).ϕ ≡ ϕ[(µ(X : τ).ϕ)/X] (fixpoint unfolding)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 13

Semantics of HFL

semantics of formula ϕ with ∅ ` ϕ : τ is element of [[τ]] over
transition system T = (S ,−→, L)

[[Γ ` p : Pr]]Tη = {s ∈ S | p ∈ L(s)}
[[Γ ` X : τ]]Tη = η(X)

[[Γ ` ¬ϕ : Pr]]Tη = S \ [[Γ− ` ϕ : Pr]]Tη

[[Γ ` ¬ϕ :σv → τ]]Tη = f ∈ [[σv → τ]] s.t. f̄ = [[Γ− ` ϕ :σv → τ]]Tη

[[Γ ` ϕ ∨ ψ : Pr]]Tη = [[Γ ` ϕ : Pr]]Tη ∪ [[Γ ` ψ : Pr]]Tη

[[Γ ` 〈a〉ϕ : Pr]]Tη = {s ∈ S | s a−→ t for some t ∈ [[Γ ` ϕ : Pr]]Tη }
[[Γ ` λ(X v :σ).ϕ :σv → τ]]Tη = f ∈ [[σv → τ]] s.t. ∀x ∈ [[σ]]

f x = [[Γ,X v :σ ` ϕ : τ]]Tη[X 7→x]

[[Γ ` ϕ ψ : τ]]Tη = [[Γ ` ϕ :σv → τ]]Tη [[Γ′ ` ψ :σ]]Tη

[[Γ ` µ(X : τ)ϕ : τ]]Tη =
d
{x ∈ [[τ]] | [[Γ,X+ : τ ` ϕ : τ]]Tη[X 7→x] vτ x}

Prop. 1: (λ(X : τ).ϕ) ψ ≡ ϕ[ψ/X] (β-reduction)

Prop. 2: µ(X : τ).ϕ ≡ ϕ[(µ(X : τ).ϕ)/X] (fixpoint unfolding)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 14

Examples

what properties are expressed by the following formulas?(
µF (X).X ∨ 〈a〉F (〈b〉X)

)
tt

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 14

Examples

what properties are expressed by the following formulas?(
µF (X).X ∨ F (�X)

)
ff

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 14

Examples

what properties are expressed by the following formulas?

ϕword := ¬
∨
a 6=b

(
µF (X ,Y). (X ∧ Y) ∨ F (♦X ,♦Y)

)
〈a〉tt 〈b〉tt

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 14

Examples

what properties are expressed by the following formulas?(
µF (g , g ′, g ′′). (g◦g ′◦g ′′) ∨ F (g◦〈a〉, g ′◦〈b〉, g ′′◦〈c〉)

)
id id id tt

where id := λX .X , 〈a〉 := λX .〈a〉X , and f ◦g := λX .f (g X)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 14

Examples

what properties are expressed by the following formulas?(
νF (X).[b]X ∧ [a]F (F (X))

)
ff

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 14

Examples

what properties are expressed by the following formulas?(
µF (g). (g◦g) ∨

∨
a∈Σ

F (g◦〈a〉)
)

id tt

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Higher-Order Fixpoint Logic 14

Examples

what properties are expressed by the following formulas?

ψm ψm−1 . . . ψ1 ♦ �ff where ψi := λF .λX .F (F X)

1 Motivation

2 Specifying Properties using Modal Fixpoint Logic
The Modal µ-Calculus
Higher-Order Fixpoint Logic
Computational Complexity and Decidability
Automata, Logic, Games
Fixpoint Quantifier Alternation
Polyadic Higher-Order Fixpoint Logic

3 Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 16

Fragments by Type Order

type order: ord(τ1 → . . .→ τm → Pr) = max{1 + ord(τi)}

HFLk,m = well-formed formulas using type annotations of order at
most k and at most m arguments

recall examples above:

order 1: “balanced tree”, “bisimilarity to a word”, all CFL path
properties, some CSL path properties

order 2: (all?) CSL path properties

order k: measure path lengths up to 22.
. .

2n

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 16

Fragments by Type Order

type order: ord(τ1 → . . .→ τm → Pr) = max{1 + ord(τi)}

HFLk,m = well-formed formulas using type annotations of order at
most k and at most m arguments

recall examples above:

order 1: “balanced tree”, “bisimilarity to a word”, all CFL path
properties, some CSL path properties

order 2: (all?) CSL path properties

order k: measure path lengths up to 22.
. .

2n

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 16

Fragments by Type Order

type order: ord(τ1 → . . .→ τm → Pr) = max{1 + ord(τi)}

HFLk,m = well-formed formulas using type annotations of order at
most k and at most m arguments

recall examples above:

order 1: “balanced tree”, “bisimilarity to a word”, all CFL path
properties, some CSL path properties

order 2: (all?) CSL path properties

order k: measure path lengths up to 22.
. .

2n

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 16

Fragments by Type Order

type order: ord(τ1 → . . .→ τm → Pr) = max{1 + ord(τi)}

HFLk,m = well-formed formulas using type annotations of order at
most k and at most m arguments

recall examples above:

order 1: “balanced tree”, “bisimilarity to a word”, all CFL path
properties, some CSL path properties

order 2: (all?) CSL path properties

order k: measure path lengths up to 22.
. .

2n

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 17

Model Checking HFL

Theorem 2 (Axelsson/L./Somla ’07)

For k ≥ 1,m ≥ 0: model checking HFLk,m is k-EXPTIME-compl.

Proof sketch: (upper bounds) consider height of lattices [[τ]]:

height(τ1 → . . .→ τm → Pr) = (n + 1) ·
m∏
i=1

|[[τi]]|

with
|[[τ1 → . . . τm → Pr]]| = 2n·

∏m
i=1 |[[τi]]|

 näıve bottom-up evaluation in time dominated by lattice height

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 18

Model Checking: Lower Bounds

for lower bounds: reduction from the word problem for alternating
(k−1)-EXPSPACE Turing machines

main ingredients:

• representation of large numbers by (lexicographically ordered)
functions

• stepwise counting in HFL

3 2 1 0

let inc := λX .X ↔ ♦¬X , what is inc(∅)?

principle extendable to higher orders using tests for equality,
less-than, greater-than

 simulate run of space-bounded Turing machines

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 18

Model Checking: Lower Bounds

for lower bounds: reduction from the word problem for alternating
(k−1)-EXPSPACE Turing machines

main ingredients:

• representation of large numbers by (lexicographically ordered)
functions

• stepwise counting in HFL

3 2 1 0

let inc := λX .X ↔ ♦¬X , what is inc(∅), inck(∅) for k > 1?

principle extendable to higher orders using tests for equality,
less-than, greater-than

 simulate run of space-bounded Turing machines

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 18

Model Checking: Lower Bounds

for lower bounds: reduction from the word problem for alternating
(k−1)-EXPSPACE Turing machines

main ingredients:

• representation of large numbers by (lexicographically ordered)
functions

• stepwise counting in HFL

3 2 1 0

let inc := λX .X ↔ ♦¬X , what is inc(∅), inck(∅) for k > 1?

principle extendable to higher orders using tests for equality,
less-than, greater-than

 simulate run of space-bounded Turing machines

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 19

Tail Recursion

Def.: tail-recursive fragment trHFL intuitively: fixpoint variables of
highest type . . .

• not in both conjuncts no 〈a〉X 〈b〉X
• not behind modal box operators no [a]X

• not in argument position no λF .λX .F (F (X))

formal definition via type system [[Bruse ’18]]

Theorem 3 (Bruse/L./Lozes ’17)

For k ≥ 1,m ≥ 0: model checking trHFLk,m is
(k − 1)-EXPSPACE-complete

Proof: lower bound: similar
upper bound: use nondeterministic top-down algorithm and
Savitch’s Theorem

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 19

Tail Recursion

Def.: tail-recursive fragment trHFL intuitively: fixpoint variables of
highest type . . .

• not in both conjuncts no 〈a〉X 〈b〉X
• not behind modal box operators no [a]X

• not in argument position no λF .λX .F (F (X))

formal definition via type system [[Bruse ’18]]

Theorem 3 (Bruse/L./Lozes ’17)

For k ≥ 1,m ≥ 0: model checking trHFLk,m is
(k − 1)-EXPSPACE-complete

Proof: lower bound: similar
upper bound: use nondeterministic top-down algorithm and
Savitch’s Theorem

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 20

Undecidability of Satisfiability

Theorem 4

Satisfiability for HFL1 is undecidable (at least Σ1
1-hard)

follows from undecidability of Fixpoint Logic with Chop
[Müller-Olm, ’99] and embedding into HFL1 [Viswanathan2, ’04]

undecidability not hard to see:

ϕword ∧
∨

w∈L(G1)

〈w〉tt ∧
∨

w∈L(G2)

〈w〉tt

expresses non-emptiness of intersection between CFGs G1 and G2

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Computational Complexity and Decidability 21

No Finite Model Property

decidability of model checking and Σ1
1-hardness of satisfiability

implies loss of finite model property

also possible to see directly

Theorem 5

HFL1 does not have the finite model property.

Proof:
(µX .�X) ∧ (νF (Y).Y ∧ F (♦Y)) tt

forbids infinite paths but requires paths of unbounded length �

1 Motivation

2 Specifying Properties using Modal Fixpoint Logic
The Modal µ-Calculus
Higher-Order Fixpoint Logic
Computational Complexity and Decidability
Automata, Logic, Games
Fixpoint Quantifier Alternation
Polyadic Higher-Order Fixpoint Logic

3 Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 23

The Automata-Logic-Games Connection

automata and games are important computational tools for
temporal logics

Theorem 6 (Stirling ’95, Walukiewicz ’96)

Model Checking µ-calculus = solving parity games.

Def.: parity game is a 2-player game on graphs where nodes have
priorities. Player Verifier wins infinite play iff outermost fixpoint
seen infinitely often is of type ν

Ex.:

p
?

|=
(
νX .µY .♦((p ∧ X) ∨ Y)

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 24

Stair-Parity Games

HFL model checking is not a parity game

Ex.: consider

a
b

?

|=
(
µF (X).〈b〉X ∨ 〈a〉νG .F (G)

)
tt

refinement needed here

observation for HFL1,1: fixpoints have 1 argument recursion call
stack

Def.: stair-parity game is pushdown game with parity condition
evaluated on persistent part of call stack

Theorem 7 (L. ’02, L. ’06)

Model checking HFL1,1 = stair-parity game

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 24

Stair-Parity Games

HFL model checking is not a parity game

Ex.: consider

a
b

?

|=
(
µF (X).〈b〉X ∨ 〈a〉νG .F (G)

)
tt

refinement needed here

observation for HFL1,1: fixpoints have 1 argument recursion call
stack

Def.: stair-parity game is pushdown game with parity condition
evaluated on persistent part of call stack

Theorem 7 (L. ’02, L. ’06)

Model checking HFL1,1 = stair-parity game

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 25

Games for HFL

for general HFL further extension needed; best formulated as
abstract automaton model with acceptance game

proposed automaton model: Alternating Parity Krivine Automata
(APKA)

• alternation for Boolean and modal operators (∨,∧, 〈a〉, [b])

• (stair-)parity condition for fixpoints

• Krivine Abstract Machine for higher-order features

challenge: get acceptance condition right, i.e. synchronise parity
condition with Krivine machine

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 25

Games for HFL

for general HFL further extension needed; best formulated as
abstract automaton model with acceptance game

proposed automaton model: Alternating Parity Krivine Automata
(APKA)

• alternation for Boolean and modal operators (∨,∧, 〈a〉, [b])

• (stair-)parity condition for fixpoints

• Krivine Abstract Machine for higher-order features

challenge: get acceptance condition right, i.e. synchronise parity
condition with Krivine machine

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 25

Games for HFL

for general HFL further extension needed; best formulated as
abstract automaton model with acceptance game

proposed automaton model: Alternating Parity Krivine Automata
(APKA)

• alternation for Boolean and modal operators (∨,∧, 〈a〉, [b])

• (stair-)parity condition for fixpoints

• Krivine Abstract Machine for higher-order features

challenge: get acceptance condition right, i.e. synchronise parity
condition with Krivine machine

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 25

Games for HFL

for general HFL further extension needed; best formulated as
abstract automaton model with acceptance game

proposed automaton model: Alternating Parity Krivine Automata
(APKA)

• alternation for Boolean and modal operators (∨,∧, 〈a〉, [b])

• (stair-)parity condition for fixpoints

• Krivine Abstract Machine for higher-order features

challenge: get acceptance condition right, i.e. synchronise parity
condition with Krivine machine

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 26

Alternating Parity Krivine Automata

APKA of index m is A = (X , δ, I ,Λ, (τX)X∈X) where

• finite set of (fixpoint) states X = {X1, . . . ,Xn}

• priority function Λ :X → [1,m], resp. [0,m − 1]

• transition function δ :X 7→ ϕX , generated from

ψ ::= P | ¬P | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ | f Xi | X ′ | (ψ ψ)

where f Xi : τXi for i ≤ nX and ϕX : τX .

• assignment of argument and value types

τX = τX1 → · · · → τXnX → τXnX +1

• I ∈ X initial state with τI = Pr

state space is Q = X ∪
⋃

X∈X sub(δ(X))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 26

Alternating Parity Krivine Automata

APKA of index m is A = (X , δ, I ,Λ, (τX)X∈X) where

• finite set of (fixpoint) states X = {X1, . . . ,Xn}
• priority function Λ :X → [1,m], resp. [0,m − 1]

• transition function δ :X 7→ ϕX , generated from

ψ ::= P | ¬P | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ | f Xi | X ′ | (ψ ψ)

where f Xi : τXi for i ≤ nX and ϕX : τX .

• assignment of argument and value types

τX = τX1 → · · · → τXnX → τXnX +1

• I ∈ X initial state with τI = Pr

state space is Q = X ∪
⋃

X∈X sub(δ(X))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 26

Alternating Parity Krivine Automata

APKA of index m is A = (X , δ, I ,Λ, (τX)X∈X) where

• finite set of (fixpoint) states X = {X1, . . . ,Xn}
• priority function Λ :X → [1,m], resp. [0,m − 1]

• transition function δ :X 7→ ϕX , generated from

ψ ::= P | ¬P | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ | f Xi | X ′ | (ψ ψ)

where f Xi : τXi for i ≤ nX and ϕX : τX .

• assignment of argument and value types

τX = τX1 → · · · → τXnX → τXnX +1

• I ∈ X initial state with τI = Pr

state space is Q = X ∪
⋃

X∈X sub(δ(X))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 26

Alternating Parity Krivine Automata

APKA of index m is A = (X , δ, I ,Λ, (τX)X∈X) where

• finite set of (fixpoint) states X = {X1, . . . ,Xn}
• priority function Λ :X → [1,m], resp. [0,m − 1]

• transition function δ :X 7→ ϕX , generated from

ψ ::= P | ¬P | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ | f Xi | X ′ | (ψ ψ)

where f Xi : τXi for i ≤ nX and ϕX : τX .

• assignment of argument and value types

τX = τX1 → · · · → τXnX → τXnX +1

• I ∈ X initial state with τI = Pr

state space is Q = X ∪
⋃

X∈X sub(δ(X))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 26

Alternating Parity Krivine Automata

APKA of index m is A = (X , δ, I ,Λ, (τX)X∈X) where

• finite set of (fixpoint) states X = {X1, . . . ,Xn}
• priority function Λ :X → [1,m], resp. [0,m − 1]

• transition function δ :X 7→ ϕX , generated from

ψ ::= P | ¬P | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ | f Xi | X ′ | (ψ ψ)

where f Xi : τXi for i ≤ nX and ϕX : τX .

• assignment of argument and value types

τX = τX1 → · · · → τXnX → τXnX +1

• I ∈ X initial state with τI = Pr

state space is Q = X ∪
⋃

X∈X sub(δ(X))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 27

Environments and Closures

acceptance of an LTS by an APKA explained as 2-player game on
configurations

C = (s, (ψ, e), e ′, Γ,∆)

where

• s is current state in LTS

• (ψ, e) current closure with ψ ∈ Q, e ∈ E environment binding
variables to closures

• e ′ distinguished environment (point of current computation)

• Γ = (ψn, ein), . . . , (ψ1, ei1) stack of closures

• ∆ stack of priorities

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse ’18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 27

Environments and Closures

acceptance of an LTS by an APKA explained as 2-player game on
configurations

C = (s, (ψ, e), e ′, Γ,∆)

where

• s is current state in LTS

• (ψ, e) current closure with ψ ∈ Q, e ∈ E environment binding
variables to closures

• e ′ distinguished environment (point of current computation)

• Γ = (ψn, ein), . . . , (ψ1, ei1) stack of closures

• ∆ stack of priorities

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse ’18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 27

Environments and Closures

acceptance of an LTS by an APKA explained as 2-player game on
configurations

C = (s, (ψ, e), e ′, Γ,∆)

where

• s is current state in LTS

• (ψ, e) current closure with ψ ∈ Q, e ∈ E environment binding
variables to closures

• e ′ distinguished environment (point of current computation)

• Γ = (ψn, ein), . . . , (ψ1, ei1) stack of closures

• ∆ stack of priorities

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse ’18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 27

Environments and Closures

acceptance of an LTS by an APKA explained as 2-player game on
configurations

C = (s, (ψ, e), e ′, Γ,∆)

where

• s is current state in LTS

• (ψ, e) current closure with ψ ∈ Q, e ∈ E environment binding
variables to closures

• e ′ distinguished environment (point of current computation)

• Γ = (ψn, ein), . . . , (ψ1, ei1) stack of closures

• ∆ stack of priorities

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse ’18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 27

Environments and Closures

acceptance of an LTS by an APKA explained as 2-player game on
configurations

C = (s, (ψ, e), e ′, Γ,∆)

where

• s is current state in LTS

• (ψ, e) current closure with ψ ∈ Q, e ∈ E environment binding
variables to closures

• e ′ distinguished environment (point of current computation)

• Γ = (ψn, ein), . . . , (ψ1, ei1) stack of closures

• ∆ stack of priorities

challenge: make fixpoint interaction in a play visible

Lemma: [[Bruse ’18]] Every play can be re-arranged into a tree
with a unique infinite path s.t. the outermost fixpoint on this path
faithfully determines the winner of the play.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Automata, Logic, Games 28

(Tree) Automata and Logics

Theorem 8 (Bruse ’18)

HFLk = order-k APKA

can be seen as generalisation of

Theorem 9 (Emerson/Jutla ’91)

µ-calculus = alternating parity tree auomata

important for what follows:

the acceptance game for an order-1 APKA on a binary tree can be
encoded as a binary tree again

 strictness of fixpoint alternation

1 Motivation

2 Specifying Properties using Modal Fixpoint Logic
The Modal µ-Calculus
Higher-Order Fixpoint Logic
Computational Complexity and Decidability
Automata, Logic, Games
Fixpoint Quantifier Alternation
Polyadic Higher-Order Fixpoint Logic

3 Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 30

Fixpoint Alternation in the µ-Calculus

fixpoint alternation . . .

• by example: νX .µY .♦((p ∧ X) ∨ Y)

• intuitively: inner fixpoint formula depends on outer of different
type

fixpoint alternation is obstacle for specifying program properties:

• computationally: requires fixpoint iterations to be nested

• pragmatically: makes formulas harder to understand

but . . .

Theorem 10 (Bradfield ’96, Arnold ’99,. . .)

The alternation hierarchy in Lµ is strict.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 30

Fixpoint Alternation in the µ-Calculus

fixpoint alternation . . .

• by example: νX .µY .♦((p ∧ X) ∨ Y)

• intuitively: inner fixpoint formula depends on outer of different
type

fixpoint alternation is obstacle for specifying program properties:

• computationally: requires fixpoint iterations to be nested

• pragmatically: makes formulas harder to understand

but . . .

Theorem 10 (Bradfield ’96, Arnold ’99,. . .)

The alternation hierarchy in Lµ is strict.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 31

Fixpoint Alternation in HFL

Obs.: according to “standard” def., every HFL formula is
equivalent to an alternation-free one

Ex.: νX .µY .(p ∧ ♦X) ∨ ♦Y ≡ νX .
(
(λZ .µY .(p ∧ ♦Z) ∨ ♦Y) Z

)
 fixpoint alternation hidden through higher types

alternative suggestion: use automata-logic connection

Def.: alternation index of an HFL formula of order k is the
smallest number of priorities of an equivalent APKA of order k

Ex. (cont.): νX .µY .(p ∧ ♦X) has equivalent APKA

• of order 0 with priorities {1, 2}
• of order 1 with priorities {0, 1}

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 31

Fixpoint Alternation in HFL

Obs.: according to “standard” def., every HFL formula is
equivalent to an alternation-free one

Ex.: νX .µY .(p ∧ ♦X) ∨ ♦Y ≡ νX .
(
(λZ .µY .(p ∧ ♦Z) ∨ ♦Y) Z

)
 fixpoint alternation hidden through higher types

alternative suggestion: use automata-logic connection

Def.: alternation index of an HFL formula of order k is the
smallest number of priorities of an equivalent APKA of order k

Ex. (cont.): νX .µY .(p ∧ ♦X) has equivalent APKA

• of order 0 with priorities {1, 2}
• of order 1 with priorities {0, 1}

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 32

Fixpoint Alternation I: Strictness

higher-order does not conquer fixpoint alternation

Theorem 11 (L. ’02, Bruse ’18)

The alternation hierarchy in HFL1 is strict.

Proof idea: uses encoding of order-1 APKA run on binary tree
as binary tree and Banach’s Fixpoint Theorem, cmp. [Arnold, ’99]

there are hard APKA A0 that define acceptance:

t ∈ L(A) iff run(A, t) ∈ L(A0)

 L(A0) requires different fixpoint alternation

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 33

Fixpoint Alternation II: Collapses I

link to loss of small model property:

Theorem 12 (Bruse/L./Lozes ’17)

The Lµ fixpoint alternation hierarchy collapses over finite
structures into alternation-free HFL1.

Proof: use fact that on finite structures fixpoint iteration stops
after finitely many steps

greatest fixpoint iteration can be expressed as a least fixpoint of
order 1:

νX .ϕ(X) ≡
(
µF .λX .(X ∧�∗(X → ϕ(X))︸ ︷︷ ︸

“X⊆ϕ(X)”

) ∨ (F ϕ(X))
)
tt

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 34

Fixpoint Alternation II: Collapses II

trick can be extended to order 1

Theorem 13 (Bruse/L./Lozes ’17)

The HFL1 fixpoint alternation hierarchy collapses over finite
structures into alternation-free HFL2.

problem here: test whether greatest fixpoint of order 1 has been
reached: “∀X : f (X) ⊆ ϕ(f)(X)”

possible to enumerate all sets X on linearly ordered structures but
impossible on general structures due to bisimulation-invariance

observation: “∀ modally definable X : f (X) ⊆ ϕ(f)(X)” suffices!

νH(t).(
∧
p∈P

t(p)) ∧
∧
a∈A

H(λx .t(〈a〉x)

∧ H(λx .t(¬x)) ∧ H(λx .H(λy .t(x ∨ y)))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 34

Fixpoint Alternation II: Collapses II

trick can be extended to order 1

Theorem 13 (Bruse/L./Lozes ’17)

The HFL1 fixpoint alternation hierarchy collapses over finite
structures into alternation-free HFL2.

problem here: test whether greatest fixpoint of order 1 has been
reached: “∀X : f (X) ⊆ ϕ(f)(X)”

possible to enumerate all sets X on linearly ordered structures but
impossible on general structures due to bisimulation-invariance

observation: “∀ modally definable X : f (X) ⊆ ϕ(f)(X)” suffices!

νH(t).(
∧
p∈P

t(p)) ∧
∧
a∈A

H(λx .t(〈a〉x)

∧ H(λx .t(¬x)) ∧ H(λx .H(λy .t(x ∨ y)))

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 35

Fixpoint Alternation II: Collapse III

technique can be extended even further

note: order-2 function has order-1 functions as arguments

 need to enumerate all functions of the form λx1 . . . λxm.ϕ with
modal ϕ when checking for termination of fixpoint iteration, e.g.
for m = 1:

νH(t).(
∧
p∈P

t(λx .p)) ∧ t(λx .x) ∧ H(λf .t(λx .¬f (x)))

∧
∧
a∈A

H(λf .t(λx .〈a〉f (x))) ∧ H(λf1.H(λf2.t(λx .f1(x) ∨ f2(x))))

Theorem 14 (Bruse/L./Lozes ’17)

The HFL2 fixpoint alternation hierarchy collapses over finite
structures into alternation-free HFL3.

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Fixpoint Quantifier Alternation 35

Fixpoint Alternation II: Collapse III

technique can be extended even further

note: order-2 function has order-1 functions as arguments

 need to enumerate all functions of the form λx1 . . . λxm.ϕ with
modal ϕ when checking for termination of fixpoint iteration, e.g.
for m = 1:

νH(t).(
∧
p∈P

t(λx .p)) ∧ t(λx .x) ∧ H(λf .t(λx .¬f (x)))

∧
∧
a∈A

H(λf .t(λx .〈a〉f (x))) ∧ H(λf1.H(λf2.t(λx .f1(x) ∨ f2(x))))

Theorem 14 (Bruse/L./Lozes ’17)

The HFL2 fixpoint alternation hierarchy collapses over finite
structures into alternation-free HFL3.

1 Motivation

2 Specifying Properties using Modal Fixpoint Logic
The Modal µ-Calculus
Higher-Order Fixpoint Logic
Computational Complexity and Decidability
Automata, Logic, Games
Fixpoint Quantifier Alternation
Polyadic Higher-Order Fixpoint Logic

3 Future Work / Open Questions

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 37

Polyadic Modal Logics

µ-calculus and HFL (etc.) are monadic: they define a set of states
in each TS

polyadic modal logics are interpreted in tuples define relations
of predetermined arity

syntactic solution: use tokens / names 1, 2, . . . , r

classic example [Andersen ’94; Otto ’99]

ϕbis :=

νX .(
∧
p∈P

p(1)→ p(2)) ∧ (
∧
a∈Σ

[a]1〈a〉2X) ∧ {1↔ 2}X

defines bisimilarity ∼; in general:

Theorem 15 (Otto ’99)

PHFL0 ≡ PTIME/∼

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 37

Polyadic Modal Logics

µ-calculus and HFL (etc.) are monadic: they define a set of states
in each TS

polyadic modal logics are interpreted in tuples define relations
of predetermined arity

syntactic solution: use tokens / names 1, 2, . . . , r

classic example [Andersen ’94; Otto ’99]

ϕbis := νX .(
∧
p∈P

p(1)→ p(2)) ∧ (
∧
a∈Σ

[a]1〈a〉2X) ∧ {1↔ 2}X

defines bisimilarity ∼; in general:

Theorem 15 (Otto ’99)

PHFL0 ≡ PTIME/∼

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 38

Polyadic Higher-Order Fixpoint Logic

polyadicity can be integrated into HFL PHFL

ϕ ::= p(i) | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉iϕ | {κ}ϕ | µ(X : τ).ϕ | λ(X v : τ).ϕ | ϕ ϕ

with 1 ≤ i ≤ r and κ : [r]→ [r] for some fixed arity r ≥ 1

all other notions extend straight-forwardly with [[Pr]] = 2S
r

Ex.:
(
νF (X ,Y).(X → Y) ∧

∧
a∈Σ

F (〈a〉1X , 〈a〉2Y)
)

fin(1) fin(2)

expresses NFA universality

note: PHFL1 can express PSPACE-complete problems

what exactly is the expressive power of each PHFLk?

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 38

Polyadic Higher-Order Fixpoint Logic

polyadicity can be integrated into HFL PHFL

ϕ ::= p(i) | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉iϕ | {κ}ϕ | µ(X : τ).ϕ | λ(X v : τ).ϕ | ϕ ϕ

with 1 ≤ i ≤ r and κ : [r]→ [r] for some fixed arity r ≥ 1

all other notions extend straight-forwardly with [[Pr]] = 2S
r

Ex.:
(
νF (X ,Y).(X → Y) ∧

∧
a∈Σ

F (〈a〉1X , 〈a〉2Y)
)

fin(1) fin(2)

expresses NFA universality

note: PHFL1 can express PSPACE-complete problems

what exactly is the expressive power of each PHFLk?

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 38

Polyadic Higher-Order Fixpoint Logic

polyadicity can be integrated into HFL PHFL

ϕ ::= p(i) | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉iϕ | {κ}ϕ | µ(X : τ).ϕ | λ(X v : τ).ϕ | ϕ ϕ

with 1 ≤ i ≤ r and κ : [r]→ [r] for some fixed arity r ≥ 1

all other notions extend straight-forwardly with [[Pr]] = 2S
r

Ex.:
(
νF (X ,Y).(X → Y) ∧

∧
a∈Σ

F (〈a〉1X , 〈a〉2Y)
)

fin(1) fin(2)

expresses NFA universality

note: PHFL1 can express PSPACE-complete problems

what exactly is the expressive power of each PHFLk?

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 39

Declarative Complexity Theory

PHFLk is a natural specification language for
bisimulation-invariant properties

Theorem 16 (L./Lozes ’14, Kronenberger ’18)

a) PHFLk ≡ k-EXPTIME/∼ for k ≥ 0

b) tail-recursive PHFLk ≡ (k − 1)-EXPSPACE/∼ for k > 0

Proof: upper bounds by reduction of model checking problems
from PHFLk to HFLk

lower bounds with the help of intermediate logics using

a) HOk+1+LFP ≡ k-EXPTIME [Immerman ’87, Freire/Martins ’11]

b) HOk+1+PFP ≡ k-EXPSPACE
[Abiteboul/Vianu ’87, Bruse/Kronenberger ’xx]

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 39

Declarative Complexity Theory

PHFLk is a natural specification language for
bisimulation-invariant properties

Theorem 16 (L./Lozes ’14, Kronenberger ’18)

a) PHFLk ≡ k-EXPTIME/∼ for k ≥ 0

b) tail-recursive PHFLk ≡ (k − 1)-EXPSPACE/∼ for k > 0

Proof: upper bounds by reduction of model checking problems
from PHFLk to HFLk

lower bounds with the help of intermediate logics using

a) HOk+1+LFP ≡ k-EXPTIME [Immerman ’87, Freire/Martins ’11]

b) HOk+1+PFP ≡ k-EXPSPACE
[Abiteboul/Vianu ’87, Bruse/Kronenberger ’xx]

Martin Lange: HFL — Specifying Properties using Modal Fixpoint Logic — Polyadic Higher-Order Fixpoint Logic 39

Declarative Complexity Theory

PHFLk is a natural specification language for
bisimulation-invariant properties

Theorem 16 (L./Lozes ’14, Kronenberger ’18)

a) PHFLk ≡ k-EXPTIME/∼ for k ≥ 0

b) tail-recursive PHFLk ≡ (k − 1)-EXPSPACE/∼ for k > 0

Proof: upper bounds by reduction of model checking problems
from PHFLk to HFLk

lower bounds with the help of intermediate logics using

a) HOk+1+LFP ≡ k-EXPTIME [Immerman ’87, Freire/Martins ’11]

b) HOk+1+PFP ≡ k-EXPSPACE
[Abiteboul/Vianu ’87, Bruse/Kronenberger ’xx]

1 Motivation

2 Specifying Properties using Modal Fixpoint Logic
The Modal µ-Calculus
Higher-Order Fixpoint Logic
Computational Complexity and Decidability
Automata, Logic, Games
Fixpoint Quantifier Alternation
Polyadic Higher-Order Fixpoint Logic

3 Future Work / Open Questions

Martin Lange: HFL — Future Work / Open Questions — 41

Open Questions: Fixpoint Alternation Strictness

how do fixpoint alternation and type order interact in detail?

Conjecture: the fixpoint alternation hierarchy is strict within each
HFLk and even within HFL over the class of all structures / trees

Martin Lange: HFL — Future Work / Open Questions — 42

Open Questions: Collapse Classes

collapse Theorems. 12–14 stated for class Tfin of finite structures
can be strengthened

clearly hold for class T∼fin of structures with finite bisimulation
quotients

even for classes of structures with finite closure ordinals

Conjecture: all inclusions in

T0
fin ⊇ T1

fin ⊇ · · · ⊇
⋂
k∈N

Tk
fin ⊇ T∼fin) Tfin

are strict where Tk
fin = structures on which HFLk -definable fixpoint

iterations stabilise after finitely many steps

Martin Lange: HFL — Future Work / Open Questions — 42

Open Questions: Collapse Classes

collapse Theorems. 12–14 stated for class Tfin of finite structures
can be strengthened

clearly hold for class T∼fin of structures with finite bisimulation
quotients

even for classes of structures with finite closure ordinals

Conjecture: all inclusions in

T0
fin ⊇ T1

fin ⊇ · · · ⊇
⋂
k∈N

Tk
fin ⊇ T∼fin) Tfin

are strict where Tk
fin = structures on which HFLk -definable fixpoint

iterations stabilise after finitely many steps

Martin Lange: HFL — Future Work / Open Questions — 43

Open Questions: A Proof Theory

Σ1
1-hardness makes axiomatisability a difficult question

Open question: Are there fragments of PHFL that can be
axiomatised?

benefit: could reduce question after inclusion between program
equivalences / pre-orders to finding proofs in PHFL

Ex.: ` ϕbis → ϕtrace?

The End

	Motivation
	Specifying Properties using Modal Fixpoint Logic
	The Modal -Calculus
	Higher-Order Fixpoint Logic
	Computational Complexity and Decidability
	Automata, Logic, Games
	Fixpoint Quantifier Alternation
	Polyadic Higher-Order Fixpoint Logic

	Future Work / Open Questions

