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Model Theory

Definable sets in structures: ϕ(M) where M is a structure, φ a
formula with free variables, say x1, . . . , xn here ϕ(M) denotes the
solution set of ϕ in M - so ϕ(M) is a subset of Mn.

For instance solution sets of systems of equations: if M is a field and
ϕ(x) is a system of equations

∧m
i=1 pi(x) = 0 where pi is a polynomial

in x1, . . . , xn with coefficients in M , then the solution set ϕ(M) is a
typical affine variety (a subvariety of affine n-space over M).
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Modules: that is, representations of mathematical structures (for example a
group G ) by actions on simple mathematical structures such as abelian groups or
vector spaces V . So a module is given by a homomorphism (for example of
groups) from the structure to the endomorphism algebra of the representing space
(ρ : G → End(V )).

Usually the structure being represented may be taken to be a ring R, for example
the ring of integers Z, or a ring of matrices Mn(K ), or a polynomial ring
K [T1, . . . ,Tn].
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Model theory for (R-)modules: given a ring R, we set up a language LR with a
constant symbol 0 and binary operation symbol + with which to express the
underlying abelian group structure of a module, and, for each r ∈ R, a 1-ary
function symbol with which to express (scalar) multiplication by r .

A typical atomic formula is, modulo the theory of, say right, R-modules, of the
form

∑n
i=1 xi ri = 0 with the ri ∈ R and variables xi . We build the (finitary,

classical) language LR from these atomic formulas in the usual way.
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pp formulas: over a field R = K we have complete elimination of quantifiers
for the theory of R-modules, meaning that every definable set (with parameters) is
a finite boolean combination of the affine subspaces which are solution sets of
finite systems of equations. This is because the projection (=
existential-quantification) of such a solution set is again of this form.

That is, a formula of the form ∃y1, . . . , yk
(∑n

i=1 xi ri +
∑k

j=1 yjsj = 0
)

- a typical
pp (for “positive primitive”, also called regular) formula - is equivalent to one of
the form

∑n
i=1 xi ti = 0. But, over general rings, we must keep the existential

quantification, so the complexity of formulas is higher. We do, however, have the
following:
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pp-elimination of quantifiers: Every formula for R-modules is, modulo the
theory of R-modules, equivalent to a finite boolean combination of invariants
sentences and pp formulas.
An “invariants sentence” is a sentence of LR expressing that the index of the
solution set of a pp formula ψ(x) in that of some other pp formula ϕ(x) is at
least N, for some natural number N. This makes sense because solution sets of pp
formulas are abelian groups.
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pp formulas and algebra: Thus the pp formulas are the most important for the
model theory of modules. They are also exactly those whose solution sets are
preserved by homomorphisms (if f : M → N is a homomorphism of R-modules
and ϕ a pp formula, then fϕ(M) ⊆ ϕ(N)).
This is reflected in a strong connection between model theory and algebra for
modules, with the former having many applications to the latter.
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Sheaves

A sheaf is a collection of structures, all of the same kind, indexed in a continuous
way by the open sets of a (fixed) topological space X (in a different view, indexed
by the points of X ).
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In particular, given X , a ringed space R over X is given by the data:
for each open set U ⊆ X , a ring RU (with 1);
for each inclusion V ⊂ U of open sets, a ring homomorphism (restriction)
rUV : RU → RV , such that rUU = 1RU and, if W ⊆ V ⊆ U, then rVW rUV = rUW .

(That is, a contravariant functor from the partial order of open subsets of X ,
regarded as a category, to the category of (unital) rings.)

That is the definition of a presheaf of rings; to be a sheaf one requires the
following conditions whenever we have an open cover U =

⋃
λ Uλ of open subsets

of X :
if s, t ∈ RU are such that, for every λ, rUUλ

(s) = rUUλ
(t), then s = t;

given, for each λ, some sλ ∈ RUλ, such that, for every λ, µ,
rUλUλ∩Uµ

(sλ) = rUµUλ∩Uµ
(sµ), there is s ∈ RU such that, for every λ,

rUUλ
(s) = sλ.

For instance, X might be a manifold and RU the ring of continuous functions
from U to R.
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Sheaves of modules: If R is a ringed space, then one has the notion of an
R-module: a sheaf M of abelian groups over X such that:

for every open subset U ⊆ X , MU has a left RU-module structure;

given open subsets V ⊆ U of X , the restriction map rMUV : MU → MV is a
homomorphism of RU-modules, where MV is given the RU-module structure
induced by the ring morphism rRUV : RU → RV .

The category Mod-R of R-modules: This is a Grothendieck abelian category. If
X , together with R, is an algebraic variety, then we also have the full subcategory
Qcoh(X ) of quasicoherent sheaves over X , which are those which look locally (on
each member of an affine cover) like a module made into a sheaf by localisation.
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Model theory for sheaves of modules: At first sight it is not at all obvious that
we can treat sheaves of modules model-theoretically in the same way as ordinary
modules (that, note, is the case where X is a 1-point space). But, with a change
in viewpoint, we can.
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Multisorted structures

Many types of structure are naturally multisorted: for instance a ring with
valuation, or a metric space.
Also, for instance, n-tuples of elements of a structure M, that is elements of Mn,
can be regarded as elements of a new sort.

Representations of quivers are algebraic examples of naturally multi-sorted
structures.
A quiver is a directed graph (loops and multiple directed edges are allowed).
A representation V of a quiver Q in vector spaces over a field K is given by, for
each vertex i of Q, some K -vector-space Vi and, for each arrow i

α−→ j of Q, some
K -linear transformation Vα : Vi → Vj .
Then we can regard the elements of Vi as being the elements of V of sort i .
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Languages for multisorted structures: these are as usual (1-sorted) first order
languages but:

variables are sorted;
symbols for constants are sorted;
each function symbol has domain a finite product of sorts and codomain a sort;
each relation symbol is on a finite product of sorts.
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Multisorted Rings: A multisorted ring is otherwise known as a ring with many
objects (or a ring with local identities).

In terms of its representations, a multisorted ring R is equivalent to a small
preadditive category, the left modules over R being exactly the additive functors
from R, regarded as a preadditive category, to the category Ab of abelian groups
(the right modules are the contravariant functors).
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Multisorted Modules: As just stated, these can be regarded as additive functors,
but we can take a more standard, set-theoretic, view of them, essentially replacing
a functor by its image. In this view, a multisorted module consists of a set of
abelian groups (indexed by a fixed set I , which will also index the sorts of the
corresponding language) and a set of additive maps between these groups.

A 1-sorted module thus consists of an abelian group, M say, together with a set of
(group-)endomorphisms of M which forms a ring.

A many-sorted=multisorted module can be thought of as a representation of a
quiver. At each vertex/sort there is a ring acting but there are also
(multiplication-by-)scalar actions between sorts.
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Languages for multisorted modules:
for each sort σ we have symbols 0σ, +σ with which to express the abelian group
structure;
for each element r of the multisorted ring, with domain σ and codomain τ, we
have a 1-ary, corespondingly sorted, function symbol in the language (covariant
for left modules, contravariant for right modules).
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Sheaves of modules as multisorted structures: The definition of presheaf
suggests how to regard sheaves of (for instance) modules as multisorted
structures: we can index the sorts by the open subsets and introduce function
symbols indexed by the restriction maps.

However:
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Elements should be finitary: at least if we want to use classical, finitary model
theory.
Yet the sheaf condition is not finitary:

For instance, consider a (non-compact) open set U and a proper infinite cover
{Uλ}λ, then write a set of formulas saying, of variables x , y (both of sort U), that,
x 6= y but that for all λ, rUUλ

(x) = rUUλ
(y). This set could be finitely consistent

so, with the Compactness Theorem, we could produce two elements of sort U
which were not equal yet would have equal restrictions to each open set in the
cover. Thus we would have a failure of the sheaf condition. That is, there might
be some elementary extension of a sheaf that is not a sheaf (it would be just a
presheaf).

Therefore, although this language would be suitable for presheaves, the class of
sheaves would not necessarily be an axiomatisable subclass of the class of
presheaves.
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cover. Thus we would have a failure of the sheaf condition. That is, there might
be some elementary extension of a sheaf that is not a sheaf (it would be just a
presheaf).

Therefore, although this language would be suitable for presheaves, the class of
sheaves would not necessarily be an axiomatisable subclass of the class of
presheaves.
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A remedy: is to index the sorts, not by all open sets, but by the compact open
sets only. Then the above problem does not arise and we do get a good model
theory of such structures.

We do, however, require that there are enough compact open sets, in the sense
that every sheaf is determined by its sections over compact sets. Therefore we
require the space to have a basis of compact open sets and, at least for technical
reasons, we also require that there is such a basis which is closed under
intersection.

For instance, if X is a noetherian space (has the descending chain condition on
closed subsets), then every open set is compact. The ringed spaces arising in
practice, in particular in algebraic geometry, very often have this property.
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Finitely accessible categories: If X is a topological space satisfying the
condition that there is a basis, closed under intersection, of compact open sets,
and if R is any sheaf of rings over X , then the category of R-modules is finitely
accessible, indeed locally finitely presented.

This means every structure in the category is determined by its “finitary elements”
(of various sorts) - in our example, the “elements” are the sections over an open
set and an “element” is “finitary” if that open set is compact.

In that case, the structures in the category are amenable to analysis using
multisorted first order classical logic. Therefore, in the case of sheaves over such a
ringed space all the usual methods and theorems of model theory for ordinary,
1-sorted, modules, apply.
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